Logo ROOT   6.18/05
Reference Guide
RooLognormal.cxx
Go to the documentation of this file.
1 /*****************************************************************************
2 * Project: RooFit *
3 * @(#)root/roofit:$Id$ *
4 * *
5 * RooFit Lognormal PDF *
6 * *
7 * Author: Gregory Schott and Stefan Schmitz *
8 * *
9 *****************************************************************************/
10
11/** \class RooLognormal
12 \ingroup Roofit
13
14RooFit Lognormal PDF. The two parameters are:
15 - m0: the median of the distribution
16 - k=exp(sigma): sigma is called the shape parameter in the TMath parameterization
17
18\f[ Lognormal(x,m_0,k) = \frac{e^{(-ln^2(x/m_0))/(2ln^2(k))}}{\sqrt{2\pi \cdot ln(k)\cdot x}} \f]
19
20The parameterization here is physics driven and differs from the ROOT::Math::lognormal_pdf(x,m,s,x0) with:
21 - m = log(m0)
22 - s = log(k)
23 - x0 = 0
24**/
25
26#include "RooFit.h"
27
28#include "Riostream.h"
29#include "Riostream.h"
30#include <math.h>
31
32#include "RooLognormal.h"
33#include "RooAbsReal.h"
34#include "RooRealVar.h"
35#include "RooRandom.h"
36#include "RooMath.h"
37#include "TMath.h"
38
42
43#include "TError.h"
44
45using namespace std;
46
48
49////////////////////////////////////////////////////////////////////////////////
50
51RooLognormal::RooLognormal(const char *name, const char *title,
52 RooAbsReal& _x, RooAbsReal& _m0,
53 RooAbsReal& _k) :
54 RooAbsPdf(name,title),
55 x("x","Observable",this,_x),
56 m0("m0","m0",this,_m0),
57 k("k","k",this,_k)
58{
59}
60
61////////////////////////////////////////////////////////////////////////////////
62
63RooLognormal::RooLognormal(const RooLognormal& other, const char* name) :
64 RooAbsPdf(other,name), x("x",this,other.x), m0("m0",this,other.m0),
65 k("k",this,other.k)
66{
67}
68
69////////////////////////////////////////////////////////////////////////////////
70/// ln(k)<1 would correspond to sigma < 0 in the parameterization
71/// resulting by transforming a normal random variable in its
72/// standard parameterization to a lognormal random variable
73/// => treat ln(k) as -ln(k) for k<1
74
76{
77 Double_t xv = x;
79 Double_t ln_m0 = TMath::Log(m0);
80 Double_t x0 = 0;
81
82 Double_t ret = ROOT::Math::lognormal_pdf(xv,ln_m0,ln_k,x0);
83 return ret ;
84}
85
86////////////////////////////////////////////////////////////////////////////////
87
88Int_t RooLognormal::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char* /*rangeName*/) const
89{
90 if (matchArgs(allVars,analVars,x)) return 1 ;
91 return 0 ;
92}
93
94////////////////////////////////////////////////////////////////////////////////
95
96Double_t RooLognormal::analyticalIntegral(Int_t code, const char* rangeName) const
97{
98 R__ASSERT(code==1) ;
99
100 static const Double_t root2 = sqrt(2.) ;
101
103 Double_t ret = 0.5*( RooMath::erf( TMath::Log(x.max(rangeName)/m0)/(root2*ln_k) ) - RooMath::erf( TMath::Log(x.min(rangeName)/m0)/(root2*ln_k) ) ) ;
104
105 return ret ;
106}
107
108////////////////////////////////////////////////////////////////////////////////
109
110Int_t RooLognormal::getGenerator(const RooArgSet& directVars, RooArgSet &generateVars, Bool_t /*staticInitOK*/) const
111{
112 if (matchArgs(directVars,generateVars,x)) return 1 ;
113 return 0 ;
114}
115
116////////////////////////////////////////////////////////////////////////////////
117
119{
120 R__ASSERT(code==1) ;
121
122 Double_t xgen ;
123 while(1) {
125 if (xgen<=x.max() && xgen>=x.min()) {
126 x = xgen ;
127 break;
128 }
129 }
130
131 return;
132}
int Int_t
Definition: RtypesCore.h:41
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
#define ClassImp(name)
Definition: Rtypes.h:365
#define R__ASSERT(e)
Definition: TError.h:96
char name[80]
Definition: TGX11.cxx:109
double sqrt(double)
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition: RooAbsReal.h:53
Bool_t matchArgs(const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a) const
Utility function for use in getAnalyticalIntegral().
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooFit Lognormal PDF.
Definition: RooLognormal.h:19
Int_t getGenerator(const RooArgSet &directVars, RooArgSet &generateVars, Bool_t staticInitOK=kTRUE) const
Load generatedVars with the subset of directVars that we can generate events for, and return a code t...
Int_t getAnalyticalIntegral(RooArgSet &allVars, RooArgSet &analVars, const char *rangeName=0) const
Interface function getAnalyticalIntergral advertises the analytical integrals that are supported.
RooRealProxy k
Definition: RooLognormal.h:38
Double_t evaluate() const
ln(k)<1 would correspond to sigma < 0 in the parameterization resulting by transforming a normal rand...
void generateEvent(Int_t code)
Interface for generation of an event using the algorithm corresponding to the specified code.
RooRealProxy x
Definition: RooLognormal.h:36
RooRealProxy m0
Definition: RooLognormal.h:37
Double_t analyticalIntegral(Int_t code, const char *rangeName=0) const
Implements the actual analytical integral(s) advertised by getAnalyticalIntegral.
static std::complex< double > erf(const std::complex< double > z)
complex erf function
Definition: RooMath.cxx:580
static TRandom * randomGenerator()
Return a pointer to a singleton random-number generator implementation.
Definition: RooRandom.cxx:54
Double_t min(const char *rname=0) const
Definition: RooRealProxy.h:56
Double_t max(const char *rname=0) const
Definition: RooRealProxy.h:57
double lognormal_pdf(double x, double m, double s, double x0=0)
Probability density function of the lognormal distribution.
Double_t x[n]
Definition: legend1.C:17
Double_t Gaus(Double_t x, Double_t mean, Double_t sigma)
Gauss.
Double_t Exp(Double_t x)
Definition: TMath.h:715
Double_t Log(Double_t x)
Definition: TMath.h:748
Short_t Abs(Short_t d)
Definition: TMathBase.h:120