27#ifndef ROOT_TMVA_MethodDT
28#define ROOT_TMVA_MethodDT
#define ClassDef(name, id)
Class that contains all the data information.
Implementation of a Decision Tree.
Int_t GetNNodesBeforePruning()
Virtual base Class for all MVA method.
virtual void ReadWeightsFromStream(std::istream &)=0
Analysis of Boosted Decision Trees.
virtual ~MethodDT(void)
destructor
MethodDT(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
the standard constructor for just an ordinar "decision trees"
Double_t TestTreeQuality(DecisionTree *dt)
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes and regression with one regression-target.
SeparationBase * fSepType
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns MVA value
DecisionTree::EPruneMethod fPruneMethod
static const Int_t fgDebugLevel
Double_t fDeltaPruneStrength
const Ranking * CreateRanking()
void ReadWeightsFromXML(void *wghtnode)
Double_t fNodePurityLimit
void GetHelpMessage() const
std::vector< Double_t > fVariableImportance
void AddWeightsXMLTo(void *parent) const
Double_t PruneTree()
prune the decision tree if requested (good for individual trees that are best grown out,...
void ReadWeightsFromStream(std::istream &istr)
Int_t GetNNodesBeforePruning()
std::vector< Event * > fEventSample
Double_t GetPruneStrength()
void DeclareOptions()
Define the options (their key words) that can be set in the option string.
void Init(void)
common initialisation with defaults for the DT-Method
void SetMinNodeSize(Double_t sizeInPercent)
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility
void ProcessOptions()
the option string is decoded, for available options see "DeclareOptions"
Ranking for variables in method (implementation)
An interface to calculate the "SeparationGain" for different separation criteria used in various trai...
create variable transformations