Logo ROOT   6.18/05
Reference Guide
SeparationBase.h
Go to the documentation of this file.
1// @(#)root/tmva $Id$
2// Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss
3
4/**********************************************************************************
5 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6 * Package: TMVA *
7 * Class : SeparationBase *
8 * Web : http://tmva.sourceforge.net *
9 * *
10 * Description: An interface to different separation criteria used in various *
11 * training algorithms, as there are: *
12 * Gini-Index, Cross Entropy, Misclassification Error, e.t.c. *
13 * *
14 * There are two things: the Separation Index, and the Separation Gain *
15 * Separation Index: *
16 * Measure of the "purity" of a sample. If all elements (events) in the *
17 * sample belong to the same class (e.g. signal or backgr), than the *
18 * separation index is 0 (meaning 100% purity (or 0% purity as it is *
19 * symmetric. The index becomes maximal, for perfectly mixed samples *
20 * eg. purity=50% , N_signal = N_bkg *
21 * *
22 * Separation Gain: *
23 * the measure of how the quality of separation of the sample increases *
24 * by splitting the sample e.g. into a "left-node" and a "right-node" *
25 * (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) *
26 * this is then the quality criterion which is optimized for when trying *
27 * to increase the information in the system (making the best selection *
28 * *
29 * *
30 * Authors (alphabetical): *
31 * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
32 * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
33 * Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
34 * *
35 * Copyright (c) 2005: *
36 * CERN, Switzerland *
37 * U. of Victoria, Canada *
38 * Heidelberg U., Germany *
39 * *
40 * Redistribution and use in source and binary forms, with or without *
41 * modification, are permitted according to the terms listed in LICENSE *
42 * (http://tmva.sourceforge.net/LICENSE) *
43 **********************************************************************************/
44
45#ifndef ROOT_TMVA_SeparationBase
46#define ROOT_TMVA_SeparationBase
47
48//////////////////////////////////////////////////////////////////////////
49// //
50// SeparationBase //
51// //
52// An interface to calculate the "SeparationGain" for different //
53// separation criteria used in various training algorithms //
54// //
55// There are two things: the Separation Index, and the Separation Gain //
56// Separation Index: //
57// Measure of the "purity" of a sample. If all elements (events) in the //
58// sample belong to the same class (e.g. signal or background), than the//
59// separation index is 0 (meaning 100% purity (or 0% purity as it is //
60// symmetric. The index becomes maximal, for perfectly mixed samples //
61// eg. purity=50% , N_signal = N_bkg //
62// //
63// Separation Gain: //
64// the measure of how the quality of separation of the sample increases //
65// by splitting the sample e.g. into a "left-node" and a "right-node" //
66// (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) //
67// this is then the quality criterion which is optimized for when trying//
68// to increase the information in the system (making the best selection //
69// //
70//////////////////////////////////////////////////////////////////////////
71
72#include "Rtypes.h"
73
74#include "TString.h"
75
76#include "TMath.h"
77
78#include <limits>
79
80namespace TMVA {
81
83
84 public:
85
86 // default constructor
88
89 //copy constructor
91
92 // destructor
93 virtual ~SeparationBase(){}
94
95 // Return the gain in separation of the original sample is split in two sub-samples
96 // (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right)
97 virtual Double_t GetSeparationGain( const Double_t nSelS, const Double_t nSelB,
98 const Double_t nTotS, const Double_t nTotB );
99
100 // Return the separation index (a measure for "purity" of the sample")
101 virtual Double_t GetSeparationIndex( const Double_t s, const Double_t b ) = 0;
102
103 // Return the name of the concrete Index implementation
104 const TString& GetName() { return fName; }
105
106 protected:
107
108 TString fName; // name of the concrete Separation Index implementation
109
111
112 ClassDef(SeparationBase,0); // Interface to different separation criteria used in training algorithms
113 };
114
115
116} // namespace TMVA
117
118#endif
#define b(i)
Definition: RSha256.hxx:100
double Double_t
Definition: RtypesCore.h:55
#define ClassDef(name, id)
Definition: Rtypes.h:326
An interface to calculate the "SeparationGain" for different separation criteria used in various trai...
virtual Double_t GetSeparationGain(const Double_t nSelS, const Double_t nSelB, const Double_t nTotS, const Double_t nTotB)
Separation Gain: the measure of how the quality of separation of the sample increases by splitting th...
const TString & GetName()
virtual Double_t GetSeparationIndex(const Double_t s, const Double_t b)=0
SeparationBase()
Constructor.
Basic string class.
Definition: TString.h:131
static constexpr double s
create variable transformations