Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.16/01
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
rf201_composite.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_roofit
3/// \notebook -js
4/// 'ADDITION AND CONVOLUTION' RooFit tutorial macro #201
5///
6/// Composite p.d.f with signal and background component
7///
8/// pdf = f_bkg * bkg(x,a0,a1) + (1-fbkg) * (f_sig1 * sig1(x,m,s1 + (1-f_sig1) * sig2(x,m,s2)))
9///
10/// \macro_image
11/// \macro_output
12/// \macro_code
13/// \author 07/2008 - Wouter Verkerke
14
15#include "RooRealVar.h"
16#include "RooDataSet.h"
17#include "RooGaussian.h"
18#include "RooChebychev.h"
19#include "RooAddPdf.h"
20#include "TCanvas.h"
21#include "TAxis.h"
22#include "RooPlot.h"
23using namespace RooFit ;
24
25
26void rf201_composite()
27{
28 // S e t u p c o m p o n e n t p d f s
29 // ---------------------------------------
30
31 // Declare observable x
32 RooRealVar x("x","x",0,10) ;
33
34 // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
35 RooRealVar mean("mean","mean of gaussians",5) ;
36 RooRealVar sigma1("sigma1","width of gaussians",0.5) ;
37 RooRealVar sigma2("sigma2","width of gaussians",1) ;
38
39 RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
40 RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
41
42 // Build Chebychev polynomial p.d.f.
43 RooRealVar a0("a0","a0",0.5,0.,1.) ;
44 RooRealVar a1("a1","a1",0.2,0.,1.) ;
45 RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
46
47
48 // ---------------------------------------------
49 // M E T H O D 1 - T w o R o o A d d P d f s
50 // =============================================
51
52
53 // A d d s i g n a l c o m p o n e n t s
54 // ------------------------------------------
55
56 // Sum the signal components into a composite signal p.d.f.
57 RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
58 RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
59
60
61 // A d d s i g n a l a n d b a c k g r o u n d
62 // ------------------------------------------------
63
64 // Sum the composite signal and background
65 RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ;
66 RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ;
67
68
69 // S a m p l e , f i t a n d p l o t m o d e l
70 // ---------------------------------------------------
71
72 // Generate a data sample of 1000 events in x from model
73 RooDataSet *data = model.generate(x,1000) ;
74
75 // Fit model to data
76 model.fitTo(*data) ;
77
78 // Plot data and PDF overlaid
79 RooPlot* xframe = x.frame(Title("Example of composite pdf=(sig1+sig2)+bkg")) ;
80 data->plotOn(xframe) ;
81 model.plotOn(xframe) ;
82
83 // Overlay the background component of model with a dashed line
84 model.plotOn(xframe,Components(bkg),LineStyle(kDashed)) ;
85
86 // Overlay the background+sig2 components of model with a dotted line
87 model.plotOn(xframe,Components(RooArgSet(bkg,sig2)),LineStyle(kDotted)) ;
88
89 // Print structure of composite p.d.f.
90 model.Print("t") ;
91
92
93 // ---------------------------------------------------------------------------------------------
94 // M E T H O D 2 - O n e R o o A d d P d f w i t h r e c u r s i v e f r a c t i o n s
95 // =============================================================================================
96
97 // Construct sum of models on one go using recursive fraction interpretations
98 //
99 // model2 = bkg + (sig1 + sig2)
100 //
101 RooAddPdf model2("model","g1+g2+a",RooArgList(bkg,sig1,sig2),RooArgList(bkgfrac,sig1frac),kTRUE) ;
102
103 // NB: Each coefficient is interpreted as the fraction of the
104 // left-hand component of the i-th recursive sum, i.e.
105 //
106 // sum4 = A + ( B + ( C + D) with fraction fA, fB and fC expands to
107 //
108 // sum4 = fA*A + (1-fA)*(fB*B + (1-fB)*(fC*C + (1-fC)*D))
109
110
111 // P l o t r e c u r s i v e a d d i t i o n m o d e l
112 // ---------------------------------------------------------
113 model2.plotOn(xframe,LineColor(kRed),LineStyle(kDashed)) ;
114 model2.plotOn(xframe,Components(RooArgSet(bkg,sig2)),LineColor(kRed),LineStyle(kDashed)) ;
115 model2.Print("t") ;
116
117
118 // Draw the frame on the canvas
119 new TCanvas("rf201_composite","rf201_composite",600,600) ;
120 gPad->SetLeftMargin(0.15) ; xframe->GetYaxis()->SetTitleOffset(1.4) ; xframe->Draw() ;
121
122
123}
124
const Bool_t kTRUE
Definition: RtypesCore.h:87
@ kRed
Definition: Rtypes.h:63
@ kDashed
Definition: TAttLine.h:48
@ kDotted
Definition: TAttLine.h:48
#define gPad
Definition: TVirtualPad.h:286
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Chebychev polynomial p.d.f.
Definition: RooChebychev.h:25
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
A RooPlot is a plot frame and a container for graphics objects within that frame.
Definition: RooPlot.h:41
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1123
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:558
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
The Canvas class.
Definition: TCanvas.h:31
Double_t x[n]
Definition: legend1.C:17
RooCmdArg Components(const RooArgSet &compSet)
RooCmdArg LineColor(Color_t color)
RooCmdArg LineStyle(Style_t style)
const char * Title
Definition: TXMLSetup.cxx:67