ROOT 6.16/01 Reference Guide |
Generic Max Pooling Layer class.
This generic Max Pooling Layer Class represents a pooling layer of a CNN. It inherits all of the properties of the convolutional layer TConvLayer, but it overrides the propagation methods. In a sense, max pooling can be seen as non-linear convolution: a filter slides over the input and produces one element as a function of the the elements within the receptive field. In addition to that, it contains a matrix of winning units.
The height and width of the weights and biases is set to 0, since this layer does not contain any weights.
Definition at line 57 of file MaxPoolLayer.h.
Public Types | |
using | Matrix_t = typename Architecture_t::Matrix_t |
using | Scalar_t = typename Architecture_t::Scalar_t |
Public Types inherited from TMVA::DNN::CNN::TConvLayer< Architecture_t > | |
using | Matrix_t = typename Architecture_t::Matrix_t |
using | Scalar_t = typename Architecture_t::Scalar_t |
Public Member Functions | |
TMaxPoolLayer (const TMaxPoolLayer &) | |
Copy constructor. More... | |
TMaxPoolLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t FilterHeight, size_t FilterWidth, size_t StrideRows, size_t StrideCols, Scalar_t DropoutProbability) | |
Constructor. More... | |
TMaxPoolLayer (TMaxPoolLayer< Architecture_t > *layer) | |
Copy the max pooling layer provided as a pointer. More... | |
~TMaxPoolLayer () | |
Destructor. More... | |
virtual void | AddWeightsXMLTo (void *parent) |
Writes the information and the weights about the layer in an XML node. More... | |
void | Backward (std::vector< Matrix_t > &gradients_backward, const std::vector< Matrix_t > &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2) |
Depending on the winning units determined during the Forward pass, it only forwards the derivatives to the right units in the previous layer. More... | |
void | Forward (std::vector< Matrix_t > &input, bool applyDropout=false) |
Computes activation of the layer for the given input. More... | |
std::vector< Matrix_t > & | GetIndexMatrix () |
const std::vector< Matrix_t > & | GetIndexMatrix () const |
Getters. More... | |
void | Print () const |
Prints the info about the layer. More... | |
virtual void | ReadWeightsFromXML (void *parent) |
Read the information and the weights about the layer from XML node. More... | |
Public Member Functions inherited from TMVA::DNN::CNN::TConvLayer< Architecture_t > | |
TConvLayer (const TConvLayer &) | |
Copy constructor. More... | |
TConvLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, EInitialization Init, size_t FilterHeight, size_t FilterWidth, size_t StrideRows, size_t StrideCols, size_t PaddingHeight, size_t PaddingWidth, Scalar_t DropoutProbability, EActivationFunction f, ERegularization Reg, Scalar_t WeightDecay) | |
Constructor. More... | |
TConvLayer (TConvLayer< Architecture_t > *layer) | |
Copy the conv layer provided as a pointer. More... | |
~TConvLayer () | |
Destructor. More... | |
virtual void | AddWeightsXMLTo (void *parent) |
Writes the information and the weights about the layer in an XML node. More... | |
void | Backward (std::vector< Matrix_t > &gradients_backward, const std::vector< Matrix_t > &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2) |
Compute weight, bias and activation gradients. More... | |
void | Forward (std::vector< Matrix_t > &input, bool applyDropout=false) |
Computes activation of the layer for the given input. More... | |
EActivationFunction | GetActivationFunction () const |
std::vector< Matrix_t > & | GetDerivatives () |
const std::vector< Matrix_t > & | GetDerivatives () const |
Matrix_t & | GetDerivativesAt (size_t i) |
const Matrix_t & | GetDerivativesAt (size_t i) const |
Scalar_t | GetDropoutProbability () const |
size_t | GetFilterDepth () const |
Getters. More... | |
size_t | GetFilterHeight () const |
size_t | GetFilterWidth () const |
std::vector< Matrix_t > & | GetForwardMatrices () |
const std::vector< Matrix_t > & | GetForwardMatrices () const |
size_t | GetNLocalViewPixels () const |
size_t | GetNLocalViews () const |
size_t | GetPaddingHeight () const |
size_t | GetPaddingWidth () const |
ERegularization | GetRegularization () const |
size_t | GetStrideCols () const |
size_t | GetStrideRows () const |
Scalar_t | GetWeightDecay () const |
void | Print () const |
Prints the info about the layer. More... | |
virtual void | ReadWeightsFromXML (void *parent) |
Read the information and the weights about the layer from XML node. More... | |
Public Member Functions inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
VGeneralLayer (const VGeneralLayer &) | |
Copy Constructor. More... | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNSlices, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
Constructor. More... | |
VGeneralLayer (size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, std::vector< size_t > WeightsNRows, std::vector< size_t > WeightsNCols, size_t BiasesNSlices, std::vector< size_t > BiasesNRows, std::vector< size_t > BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | |
General Constructor with different weights dimension. More... | |
VGeneralLayer (VGeneralLayer< Architecture_t > *layer) | |
Copy the layer provided as a pointer. More... | |
virtual | ~VGeneralLayer () |
Virtual Destructor. More... | |
virtual void | AddWeightsXMLTo (void *parent)=0 |
Writes the information and the weights about the layer in an XML node. More... | |
virtual void | Backward (std::vector< Matrix_t > &gradients_backward, const std::vector< Matrix_t > &activations_backward, std::vector< Matrix_t > &inp1, std::vector< Matrix_t > &inp2)=0 |
Backpropagates the error. More... | |
void | CopyBiases (const std::vector< Matrix_t > &otherBiases) |
Copies the biases provided as an input. More... | |
void | CopyWeights (const std::vector< Matrix_t > &otherWeights) |
Copies the weights provided as an input. More... | |
virtual void | Forward (std::vector< Matrix_t > &input, bool applyDropout=false)=0 |
Computes activation of the layer for the given input. More... | |
std::vector< Matrix_t > & | GetActivationGradients () |
const std::vector< Matrix_t > & | GetActivationGradients () const |
Matrix_t & | GetActivationGradientsAt (size_t i) |
const Matrix_t & | GetActivationGradientsAt (size_t i) const |
size_t | GetBatchSize () const |
Getters. More... | |
std::vector< Matrix_t > & | GetBiases () |
const std::vector< Matrix_t > & | GetBiases () const |
Matrix_t & | GetBiasesAt (size_t i) |
const Matrix_t & | GetBiasesAt (size_t i) const |
std::vector< Matrix_t > & | GetBiasGradients () |
const std::vector< Matrix_t > & | GetBiasGradients () const |
Matrix_t & | GetBiasGradientsAt (size_t i) |
const Matrix_t & | GetBiasGradientsAt (size_t i) const |
size_t | GetDepth () const |
size_t | GetHeight () const |
EInitialization | GetInitialization () const |
size_t | GetInputDepth () const |
size_t | GetInputHeight () const |
size_t | GetInputWidth () const |
std::vector< Matrix_t > & | GetOutput () |
const std::vector< Matrix_t > & | GetOutput () const |
Matrix_t & | GetOutputAt (size_t i) |
const Matrix_t & | GetOutputAt (size_t i) const |
std::vector< Matrix_t > & | GetWeightGradients () |
const std::vector< Matrix_t > & | GetWeightGradients () const |
Matrix_t & | GetWeightGradientsAt (size_t i) |
const Matrix_t & | GetWeightGradientsAt (size_t i) const |
std::vector< Matrix_t > & | GetWeights () |
const std::vector< Matrix_t > & | GetWeights () const |
Matrix_t & | GetWeightsAt (size_t i) |
const Matrix_t & | GetWeightsAt (size_t i) const |
size_t | GetWidth () const |
void | Initialize () |
Initialize the weights and biases according to the given initialization method. More... | |
bool | IsTraining () const |
virtual void | Print () const =0 |
Prints the info about the layer. More... | |
void | ReadMatrixXML (void *node, const char *name, Matrix_t &matrix) |
virtual void | ReadWeightsFromXML (void *parent)=0 |
Read the information and the weights about the layer from XML node. More... | |
void | SetBatchSize (size_t batchSize) |
Setters. More... | |
void | SetDepth (size_t depth) |
void | SetHeight (size_t height) |
void | SetInputDepth (size_t inputDepth) |
void | SetInputHeight (size_t inputHeight) |
void | SetInputWidth (size_t inputWidth) |
void | SetIsTraining (bool isTraining) |
void | SetWidth (size_t width) |
void | Update (const Scalar_t learningRate) |
Updates the weights and biases, given the learning rate. More... | |
void | UpdateBiases (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the biases, given the gradients and the learning rate. More... | |
void | UpdateBiasGradients (const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) |
Updates the bias gradients, given some other weight gradients and learning rate. More... | |
void | UpdateWeightGradients (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weight gradients, given some other weight gradients and learning rate. More... | |
void | UpdateWeights (const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) |
Updates the weights, given the gradients and the learning rate,. More... | |
void | WriteMatrixToXML (void *node, const char *name, const Matrix_t &matrix) |
void | WriteTensorToXML (void *node, const char *name, const std::vector< Matrix_t > &tensor) |
helper functions for XML More... | |
Private Attributes | |
std::vector< Matrix_t > | indexMatrix |
Matrix of indices for the backward pass. More... | |
Additional Inherited Members | |
Protected Attributes inherited from TMVA::DNN::CNN::TConvLayer< Architecture_t > | |
Scalar_t | fDropoutProbability |
Probability that an input is active. More... | |
size_t | fFilterDepth |
The depth of the filter. More... | |
size_t | fFilterHeight |
The height of the filter. More... | |
size_t | fFilterWidth |
The width of the filter. More... | |
size_t | fNLocalViewPixels |
The number of pixels in one local image view. More... | |
size_t | fNLocalViews |
The number of local views in one image. More... | |
size_t | fStrideCols |
The number of column pixels to slid the filter each step. More... | |
size_t | fStrideRows |
The number of row pixels to slid the filter each step. More... | |
Protected Attributes inherited from TMVA::DNN::VGeneralLayer< Architecture_t > | |
std::vector< Matrix_t > | fActivationGradients |
Gradients w.r.t. the activations of this layer. More... | |
size_t | fBatchSize |
Batch size used for training and evaluation. More... | |
std::vector< Matrix_t > | fBiases |
The biases associated to the layer. More... | |
std::vector< Matrix_t > | fBiasGradients |
Gradients w.r.t. the bias values of the layer. More... | |
size_t | fDepth |
The depth of the layer. More... | |
size_t | fHeight |
The height of the layer. More... | |
EInitialization | fInit |
The initialization method. More... | |
size_t | fInputDepth |
The depth of the previous layer or input. More... | |
size_t | fInputHeight |
The height of the previous layer or input. More... | |
size_t | fInputWidth |
The width of the previous layer or input. More... | |
bool | fIsTraining |
Flag indicatig the mode. More... | |
std::vector< Matrix_t > | fOutput |
Activations of this layer. More... | |
std::vector< Matrix_t > | fWeightGradients |
Gradients w.r.t. the weights of the layer. More... | |
std::vector< Matrix_t > | fWeights |
The weights associated to the layer. More... | |
size_t | fWidth |
The width of this layer. More... | |
#include <TMVA/DNN/CNN/MaxPoolLayer.h>
using TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::Matrix_t = typename Architecture_t::Matrix_t |
Definition at line 60 of file MaxPoolLayer.h.
using TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::Scalar_t = typename Architecture_t::Scalar_t |
Definition at line 61 of file MaxPoolLayer.h.
TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::TMaxPoolLayer | ( | size_t | BatchSize, |
size_t | InputDepth, | ||
size_t | InputHeight, | ||
size_t | InputWidth, | ||
size_t | FilterHeight, | ||
size_t | FilterWidth, | ||
size_t | StrideRows, | ||
size_t | StrideCols, | ||
Scalar_t | DropoutProbability | ||
) |
Constructor.
Definition at line 110 of file MaxPoolLayer.h.
TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::TMaxPoolLayer | ( | TMaxPoolLayer< Architecture_t > * | layer | ) |
Copy the max pooling layer provided as a pointer.
Definition at line 126 of file MaxPoolLayer.h.
TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::TMaxPoolLayer | ( | const TMaxPoolLayer< Architecture_t > & | layer | ) |
Copy constructor.
Definition at line 136 of file MaxPoolLayer.h.
TMVA::DNN::CNN::TMaxPoolLayer< Architecture_t >::~TMaxPoolLayer |
Destructor.
Definition at line 146 of file MaxPoolLayer.h.
|
virtual |
Writes the information and the weights about the layer in an XML node.
Reimplemented from TMVA::DNN::CNN::TConvLayer< Architecture_t >.
Definition at line 202 of file MaxPoolLayer.h.
|
virtual |
Depending on the winning units determined during the Forward pass, it only forwards the derivatives to the right units in the previous layer.
Must only be called directly at the corresponding call to Forward(...).
Reimplemented from TMVA::DNN::CNN::TConvLayer< Architecture_t >.
Definition at line 168 of file MaxPoolLayer.h.
|
virtual |
Computes activation of the layer for the given input.
The input must be in 3D tensor form with the different matrices corresponding to different events in the batch. It spatially downsamples the input matrices.
Reimplemented from TMVA::DNN::CNN::TConvLayer< Architecture_t >.
Definition at line 152 of file MaxPoolLayer.h.
|
inline |
Definition at line 104 of file MaxPoolLayer.h.
|
inline |
Getters.
Definition at line 103 of file MaxPoolLayer.h.
|
virtual |
Prints the info about the layer.
Reimplemented from TMVA::DNN::CNN::TConvLayer< Architecture_t >.
Definition at line 184 of file MaxPoolLayer.h.
|
virtual |
Read the information and the weights about the layer from XML node.
Reimplemented from TMVA::DNN::CNN::TConvLayer< Architecture_t >.
Definition at line 216 of file MaxPoolLayer.h.
|
private |
Matrix of indices for the backward pass.
Definition at line 64 of file MaxPoolLayer.h.