Logo ROOT   6.16/01
Reference Guide
ToyMCSampler.h
Go to the documentation of this file.
1// @(#)root/roostats:$Id$
2// Author: Sven Kreiss and Kyle Cranmer June 2010
3// Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke
4// Additions and modifications by Mario Pelliccioni
5/*************************************************************************
6 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
7 * All rights reserved. *
8 * *
9 * For the licensing terms see $ROOTSYS/LICENSE. *
10 * For the list of contributors see $ROOTSYS/README/CREDITS. *
11 *************************************************************************/
12
13#ifndef ROOSTATS_ToyMCSampler
14#define ROOSTATS_ToyMCSampler
15
16
17#include "Rtypes.h"
18
19#include <vector>
20#include <sstream>
21
27
28#include "RooWorkspace.h"
29#include "RooMsgService.h"
30#include "RooAbsPdf.h"
31#include "RooRealVar.h"
32
33#include "RooDataSet.h"
34
35namespace RooStats {
36
37 class DetailedOutputAggregator;
38
40
41 public:
42 NuisanceParametersSampler(RooAbsPdf *prior=NULL, const RooArgSet *parameters=NULL, Int_t nToys=1000, Bool_t asimov=kFALSE) :
43 fPrior(prior),
44 fParams(parameters),
45 fNToys(nToys),
46 fExpected(asimov),
47 fPoints(NULL),
48 fIndex(0)
49 {
50 if(prior) Refresh();
51 }
53 if(fPoints) { delete fPoints; fPoints = NULL; }
54 }
55
56 void NextPoint(RooArgSet& nuisPoint, Double_t& weight);
57
58 protected:
59 void Refresh();
60
61 private:
62 RooAbsPdf *fPrior; // prior for nuisance parameters
63 const RooArgSet *fParams; // nuisance parameters
66
67 RooAbsData *fPoints; // generated nuisance parameter points
68 Int_t fIndex; // current index in fPoints array
69};
70
72
73 public:
74
77 virtual ~ToyMCSampler();
78
79 static void SetAlwaysUseMultiGen(Bool_t flag);
80
81 void SetUseMultiGen(Bool_t flag) { fUseMultiGen = flag ; }
82
83 // main interface
85 virtual RooDataSet* GetSamplingDistributions(RooArgSet& paramPoint);
87
89 RooArgSet& allParameters,
91 Int_t additionalMC
92 );
93
94
95 // The pdf can be NULL in which case the density from SetPdf()
96 // is used. The snapshot and TestStatistic is also optional.
97 virtual void AddTestStatistic(TestStatistic* t = NULL) {
98 if( t == NULL ) {
99 oocoutI((TObject*)0,InputArguments) << "No test statistic given. Doing nothing." << std::endl;
100 return;
101 }
102
103 //if( t == NULL && fTestStatistics.size() >= 1 ) t = fTestStatistics[0];
104
105 fTestStatistics.push_back( t );
106 }
107
108 // generates toy data
109 // without weight
110 virtual RooAbsData* GenerateToyData(RooArgSet& paramPoint, RooAbsPdf& pdf) const {
111 if(fExpectedNuisancePar) oocoutE((TObject*)NULL,InputArguments) << "ToyMCSampler: using expected nuisance parameters but ignoring weight. Use GetSamplingDistribution(paramPoint, weight) instead." << std::endl;
112 double weight;
113 return GenerateToyData(paramPoint, weight, pdf);
114 }
115 virtual RooAbsData* GenerateToyData(RooArgSet& paramPoint) const { return GenerateToyData(paramPoint,*fPdf); }
116 // with weight
117 virtual RooAbsData* GenerateToyData(RooArgSet& paramPoint, double& weight, RooAbsPdf& pdf) const;
118 virtual RooAbsData* GenerateToyData(RooArgSet& paramPoint, double& weight) const { return GenerateToyData(paramPoint,weight,*fPdf); }
119
120 // generate global observables
121 virtual void GenerateGlobalObservables(RooAbsPdf& pdf) const;
122
123
124 // Main interface to evaluate the test statistic on a dataset
126 return fTestStatistics[i]->Evaluate(data, nullPOI);
127 }
130
131
132 virtual TestStatistic* GetTestStatistic(unsigned int i) const {
133 if( fTestStatistics.size() <= i ) return NULL;
134 return fTestStatistics[i];
135 }
136 virtual TestStatistic* GetTestStatistic(void) const { return GetTestStatistic(0); }
137
138 virtual Double_t ConfidenceLevel() const { return 1. - fSize; }
139 virtual void Initialize(
140 RooAbsArg& /*testStatistic*/,
141 RooArgSet& /*paramsOfInterest*/,
142 RooArgSet& /*nuisanceParameters*/
143 ) {}
144
145 virtual Int_t GetNToys(void) { return fNToys; }
146 virtual void SetNToys(const Int_t ntoy) { fNToys = ntoy; }
147 virtual void SetNEventsPerToy(const Int_t nevents) {
148 // Forces n events even for extended PDFs. Set NEvents=0 to
149 // use the Poisson distributed events from the extended PDF.
150 fNEvents = nevents;
151 }
152
153
154 // Set the Pdf, add to the the workspace if not already there
155 virtual void SetParametersForTestStat(const RooArgSet& nullpoi) {
157 fParametersForTestStat = (const RooArgSet*)nullpoi.snapshot();
158 }
159
160 virtual void SetPdf(RooAbsPdf& pdf) { fPdf = &pdf; ClearCache(); }
161
162 // How to randomize the prior. Set to NULL to deactivate randomization.
163 virtual void SetPriorNuisance(RooAbsPdf* pdf) {
164 fPriorNuisance = pdf;
168 }
169 }
170 // specify the nuisance parameters (eg. the rest of the parameters)
171 virtual void SetNuisanceParameters(const RooArgSet& np) { fNuisancePars = &np; }
172 // specify the observables in the dataset (needed to evaluate the test statistic)
173 virtual void SetObservables(const RooArgSet& o) { fObservables = &o; }
174 // specify the conditional observables
175 virtual void SetGlobalObservables(const RooArgSet& o) { fGlobalObservables = &o; }
176
177
178 // set the size of the test (rate of Type I error) ( Eg. 0.05 for a 95% Confidence Interval)
179 virtual void SetTestSize(Double_t size) { fSize = size; }
180 // set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval)
181 virtual void SetConfidenceLevel(Double_t cl) { fSize = 1. - cl; }
182
183 // Set the TestStatistic (want the argument to be a function of the data & parameter points
184 virtual void SetTestStatistic(TestStatistic *testStatistic, unsigned int i) {
185 if( fTestStatistics.size() < i ) {
186 oocoutE((TObject*)NULL,InputArguments) << "Cannot set test statistic for this index." << std::endl;
187 return;
188 }
189 if( fTestStatistics.size() == i)
190 fTestStatistics.push_back(testStatistic);
191 else
192 fTestStatistics[i] = testStatistic;
193 }
194 virtual void SetTestStatistic(TestStatistic *t) { return SetTestStatistic(t,0); }
195
198
199 // Checks for sufficient information to do a GetSamplingDistribution(...).
200 Bool_t CheckConfig(void);
201
202 // control to use bin data generation (=> see RooFit::AllBinned() option)
203 void SetGenerateBinned(bool binned = true) { fGenerateBinned = binned; }
204 // name of the tag for individual components to be generated binned (=> see RooFit::GenBinned() option)
205 void SetGenerateBinnedTag( const char* binnedTag = "" ) { fGenerateBinnedTag = binnedTag; }
206 // set auto binned generation (=> see RooFit::AutoBinned() option)
207 void SetGenerateAutoBinned( Bool_t autoBinned = kTRUE ) { fGenerateAutoBinned = autoBinned; }
208
209 // Set the name of the sampling distribution used for plotting
211 std::string GetSamplingDistName(void) { return fSamplingDistName; }
212
213 // This option forces a maximum number of total toys.
214 void SetMaxToys(Double_t t) { fMaxToys = t; }
215
216 void SetToysLeftTail(Double_t toys, Double_t threshold) {
217 fToysInTails = toys;
218 fAdaptiveLowLimit = threshold;
220 }
221 void SetToysRightTail(Double_t toys, Double_t threshold) {
222 fToysInTails = toys;
223 fAdaptiveHighLimit = threshold;
225 }
226 void SetToysBothTails(Double_t toys, Double_t low_threshold, Double_t high_threshold) {
227 fToysInTails = toys;
228 fAdaptiveHighLimit = high_threshold;
229 fAdaptiveLowLimit = low_threshold;
230 }
231
232 // calling with argument or NULL deactivates proof
234
236
237 protected:
238
240
241 // helper for GenerateToyData
242 RooAbsData* Generate(RooAbsPdf &pdf, RooArgSet &observables, const RooDataSet *protoData=NULL, int forceEvents=0) const;
243
244 // helper method for clearing the cache
245 virtual void ClearCache();
246
247
248 // densities, snapshots, and test statistics to reweight to
249 RooAbsPdf *fPdf; // model (can be alt or null)
251 std::vector<TestStatistic*> fTestStatistics;
252
253 std::string fSamplingDistName; // name of the model
254 RooAbsPdf *fPriorNuisance; // prior pdf for nuisance parameters
258 Int_t fNToys; // number of toys to generate
259 Int_t fNEvents; // number of events per toy (may be ignored depending on settings)
261 Bool_t fExpectedNuisancePar; // whether to use expectation values for nuisance parameters (ie Asimov data set)
265
266 // minimum no of toys in tails for adaptive sampling
267 // (taking weights into account, therefore double)
268 // Default: 0.0 which means no adaptive sampling
270 // maximum no of toys
271 // (taking weights into account, therefore double)
273 // tails
276
277 const RooDataSet *fProtoData; // in dev
278
280
282
283 // objects below cache information and are mutable and non-persistent
284 mutable RooArgSet* _allVars ; //!
285 mutable std::list<RooAbsPdf*> _pdfList ; //!
286 mutable std::list<RooArgSet*> _obsList ; //!
287 mutable std::list<RooAbsPdf::GenSpec*> _gsList ; //!
288 mutable RooAbsPdf::GenSpec* _gs1 ; //! GenSpec #1
289 mutable RooAbsPdf::GenSpec* _gs2 ; //! GenSpec #2
290 mutable RooAbsPdf::GenSpec* _gs3 ; //! GenSpec #3
291 mutable RooAbsPdf::GenSpec* _gs4 ; //! GenSpec #4
292
293 static Bool_t fgAlwaysUseMultiGen ; // Use PrepareMultiGen always
294 Bool_t fUseMultiGen ; // Use PrepareMultiGen?
295
296 protected:
297 ClassDef(ToyMCSampler,3) // A simple implementation of the TestStatSampler interface
298};
299}
300
301
302#endif
#define d(i)
Definition: RSha256.hxx:102
#define oocoutE(o, a)
Definition: RooMsgService.h:47
#define oocoutI(o, a)
Definition: RooMsgService.h:44
int Int_t
Definition: RtypesCore.h:41
const Bool_t kFALSE
Definition: RtypesCore.h:88
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
const Bool_t kTRUE
Definition: RtypesCore.h:87
#define ClassDef(name, id)
Definition: Rtypes.h:324
RooAbsArg is the common abstract base class for objects that represent a value (of arbitrary type) an...
Definition: RooAbsArg.h:66
RooAbsCollection * snapshot(Bool_t deepCopy=kTRUE) const
Take a snap shot of current collection contents: An owning collection is returned containing clones o...
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:37
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:31
static Double_t infinity()
Return internal infinity representation.
Definition: RooNumber.cxx:49
This class is designed to aid in the construction of RooDataSets and RooArgSets, particularly those n...
Helper class for ToyMCSampler.
Definition: ToyMCSampler.h:39
void Refresh()
Creates the initial set of nuisance parameter points.
void NextPoint(RooArgSet &nuisPoint, Double_t &weight)
Assigns new nuisance parameter point to members of nuisPoint.
NuisanceParametersSampler(RooAbsPdf *prior=NULL, const RooArgSet *parameters=NULL, Int_t nToys=1000, Bool_t asimov=kFALSE)
Definition: ToyMCSampler.h:42
Holds configuration options for proof and proof-lite.
Definition: ProofConfig.h:46
This class simply holds a sampling distribution of some test statistic.
TestStatSampler is an interface class for a tools which produce RooStats SamplingDistributions.
TestStatistic is an interface class to provide a facility for construction test statistics distributi...
Definition: TestStatistic.h:31
ToyMCSampler is an implementation of the TestStatSampler interface.
Definition: ToyMCSampler.h:71
const RooArgSet * fGlobalObservables
Definition: ToyMCSampler.h:257
RooAbsPdf::GenSpec * _gs3
GenSpec #2.
Definition: ToyMCSampler.h:290
virtual void SetNToys(const Int_t ntoy)
Definition: ToyMCSampler.h:146
void SetToysBothTails(Double_t toys, Double_t low_threshold, Double_t high_threshold)
Definition: ToyMCSampler.h:226
std::list< RooAbsPdf::GenSpec * > _gsList
Definition: ToyMCSampler.h:287
void SetProtoData(const RooDataSet *d)
Definition: ToyMCSampler.h:235
std::string fSamplingDistName
Definition: ToyMCSampler.h:253
virtual void GenerateGlobalObservables(RooAbsPdf &pdf) const
virtual RooDataSet * GetSamplingDistributionsSingleWorker(RooArgSet &paramPoint)
This is the main function for serial runs.
std::string GetSamplingDistName(void)
Definition: ToyMCSampler.h:211
void SetProofConfig(ProofConfig *pc=NULL)
Definition: ToyMCSampler.h:233
RooAbsData * Generate(RooAbsPdf &pdf, RooArgSet &observables, const RooDataSet *protoData=NULL, int forceEvents=0) const
This is the generate function to use in the context of the ToyMCSampler instead of the standard RooAb...
virtual Double_t EvaluateTestStatistic(RooAbsData &data, RooArgSet &nullPOI, int i)
Definition: ToyMCSampler.h:125
RooAbsPdf::GenSpec * _gs2
GenSpec #1.
Definition: ToyMCSampler.h:289
virtual SamplingDistribution * AppendSamplingDistribution(RooArgSet &allParameters, SamplingDistribution *last, Int_t additionalMC)
Extended interface to append to sampling distribution more samples.
NuisanceParametersSampler * fNuisanceParametersSampler
Definition: ToyMCSampler.h:281
virtual void Initialize(RooAbsArg &, RooArgSet &, RooArgSet &)
Definition: ToyMCSampler.h:139
const RooArgSet * fObservables
Definition: ToyMCSampler.h:256
virtual void SetObservables(const RooArgSet &o)
Definition: ToyMCSampler.h:173
void SetGenerateAutoBinned(Bool_t autoBinned=kTRUE)
Definition: ToyMCSampler.h:207
virtual TestStatistic * GetTestStatistic(unsigned int i) const
Definition: ToyMCSampler.h:132
void SetSamplingDistName(const char *name)
Definition: ToyMCSampler.h:210
void SetToysLeftTail(Double_t toys, Double_t threshold)
Definition: ToyMCSampler.h:216
virtual RooArgList * EvaluateAllTestStatistics(RooAbsData &data, const RooArgSet &poi)
Evaluate all test statistics, returning result and any detailed output.
virtual void SetPdf(RooAbsPdf &pdf)
Definition: ToyMCSampler.h:160
virtual RooDataSet * GetSamplingDistributions(RooArgSet &paramPoint)
Use for serial and parallel runs.
void SetGenerateBinnedTag(const char *binnedTag="")
Definition: ToyMCSampler.h:205
Bool_t CheckConfig(void)
only checks, no guessing/determination (do this in calculators, e.g.
virtual void SetPriorNuisance(RooAbsPdf *pdf)
Definition: ToyMCSampler.h:163
virtual TestStatistic * GetTestStatistic(void) const
Definition: ToyMCSampler.h:136
static Bool_t fgAlwaysUseMultiGen
GenSpec #4.
Definition: ToyMCSampler.h:293
virtual RooAbsData * GenerateToyData(RooArgSet &paramPoint, RooAbsPdf &pdf) const
Definition: ToyMCSampler.h:110
virtual void AddTestStatistic(TestStatistic *t=NULL)
Definition: ToyMCSampler.h:97
const RooArgSet * fNuisancePars
Definition: ToyMCSampler.h:255
std::list< RooArgSet * > _obsList
Definition: ToyMCSampler.h:286
const RooArgSet * fParametersForTestStat
Definition: ToyMCSampler.h:250
static void SetAlwaysUseMultiGen(Bool_t flag)
virtual Int_t GetNToys(void)
Definition: ToyMCSampler.h:145
std::vector< TestStatistic * > fTestStatistics
Definition: ToyMCSampler.h:251
virtual void SetTestStatistic(TestStatistic *testStatistic, unsigned int i)
Definition: ToyMCSampler.h:184
ToyMCSampler()
Proof constructor. Do not use.
virtual void SetGlobalObservables(const RooArgSet &o)
Definition: ToyMCSampler.h:175
virtual Double_t EvaluateTestStatistic(RooAbsData &data, RooArgSet &nullPOI)
Definition: ToyMCSampler.h:128
virtual void SetAsimovNuisancePar(Bool_t i=kTRUE)
Definition: ToyMCSampler.h:197
void SetGenerateBinned(bool binned=true)
Definition: ToyMCSampler.h:203
virtual void SetExpectedNuisancePar(Bool_t i=kTRUE)
Definition: ToyMCSampler.h:196
virtual Double_t ConfidenceLevel() const
Definition: ToyMCSampler.h:138
virtual void SetTestSize(Double_t size)
Definition: ToyMCSampler.h:179
virtual void SetTestStatistic(TestStatistic *t)
Definition: ToyMCSampler.h:194
void SetUseMultiGen(Bool_t flag)
Definition: ToyMCSampler.h:81
virtual void ClearCache()
clear the cache obtained from the pdf used for speeding the toy and global observables generation nee...
void SetToysRightTail(Double_t toys, Double_t threshold)
Definition: ToyMCSampler.h:221
RooAbsPdf::GenSpec * _gs4
GenSpec #3.
Definition: ToyMCSampler.h:291
ProofConfig * fProofConfig
Definition: ToyMCSampler.h:279
void SetMaxToys(Double_t t)
Definition: ToyMCSampler.h:214
virtual void SetNEventsPerToy(const Int_t nevents)
Definition: ToyMCSampler.h:147
virtual RooAbsData * GenerateToyData(RooArgSet &paramPoint, double &weight) const
Definition: ToyMCSampler.h:118
const RooDataSet * fProtoData
Definition: ToyMCSampler.h:277
virtual RooAbsData * GenerateToyData(RooArgSet &paramPoint) const
Definition: ToyMCSampler.h:115
virtual SamplingDistribution * GetSamplingDistribution(RooArgSet &paramPoint)
std::list< RooAbsPdf * > _pdfList
Definition: ToyMCSampler.h:285
virtual void SetNuisanceParameters(const RooArgSet &np)
Definition: ToyMCSampler.h:171
RooAbsPdf::GenSpec * _gs1
Definition: ToyMCSampler.h:288
RooAbsPdf * fPriorNuisance
Definition: ToyMCSampler.h:254
virtual void SetParametersForTestStat(const RooArgSet &nullpoi)
Definition: ToyMCSampler.h:155
virtual void SetConfidenceLevel(Double_t cl)
Definition: ToyMCSampler.h:181
Mother of all ROOT objects.
Definition: TObject.h:37
Basic string class.
Definition: TString.h:131
@ InputArguments
Definition: RooGlobalFunc.h:58
@(#)root/roostats:$Id$ Author: George Lewis, Kyle Cranmer
Definition: Asimov.h:20
static constexpr double pc