Logo ROOT   6.16/01
Reference Guide
TMVAClassification.C
Go to the documentation of this file.
1/// \file
2/// \ingroup tutorial_tmva
3/// \notebook -nodraw
4/// This macro provides examples for the training and testing of the
5/// TMVA classifiers.
6///
7/// As input data is used a toy-MC sample consisting of four Gaussian-distributed
8/// and linearly correlated input variables.
9/// The methods to be used can be switched on and off by means of booleans, or
10/// via the prompt command, for example:
11///
12/// root -l ./TMVAClassification.C\‍(\"Fisher,Likelihood\"\‍)
13///
14/// (note that the backslashes are mandatory)
15/// If no method given, a default set of classifiers is used.
16/// The output file "TMVA.root" can be analysed with the use of dedicated
17/// macros (simply say: root -l <macro.C>), which can be conveniently
18/// invoked through a GUI that will appear at the end of the run of this macro.
19/// Launch the GUI via the command:
20///
21/// root -l ./TMVAGui.C
22///
23/// You can also compile and run the example with the following commands
24///
25/// make
26/// ./TMVAClassification <Methods>
27///
28/// where: `<Methods> = "method1 method2"` are the TMVA classifier names
29/// example:
30///
31/// ./TMVAClassification Fisher LikelihoodPCA BDT
32///
33/// If no method given, a default set is of classifiers is used
34///
35/// - Project : TMVA - a ROOT-integrated toolkit for multivariate data analysis
36/// - Package : TMVA
37/// - Root Macro: TMVAClassification
38///
39/// \macro_output
40/// \macro_code
41/// \author Andreas Hoecker
42
43
44#include <cstdlib>
45#include <iostream>
46#include <map>
47#include <string>
48
49#include "TChain.h"
50#include "TFile.h"
51#include "TTree.h"
52#include "TString.h"
53#include "TObjString.h"
54#include "TSystem.h"
55#include "TROOT.h"
56
57#include "TMVA/Factory.h"
58#include "TMVA/DataLoader.h"
59#include "TMVA/Tools.h"
60#include "TMVA/TMVAGui.h"
61
62int TMVAClassification( TString myMethodList = "" )
63{
64 // The explicit loading of the shared libTMVA is done in TMVAlogon.C, defined in .rootrc
65 // if you use your private .rootrc, or run from a different directory, please copy the
66 // corresponding lines from .rootrc
67
68 // Methods to be processed can be given as an argument; use format:
69 //
70 // mylinux~> root -l TMVAClassification.C\‍(\"myMethod1,myMethod2,myMethod3\"\‍)
71
72 //---------------------------------------------------------------
73 // This loads the library
75
76 // Default MVA methods to be trained + tested
77 std::map<std::string,int> Use;
78
79 // Cut optimisation
80 Use["Cuts"] = 1;
81 Use["CutsD"] = 1;
82 Use["CutsPCA"] = 0;
83 Use["CutsGA"] = 0;
84 Use["CutsSA"] = 0;
85 //
86 // 1-dimensional likelihood ("naive Bayes estimator")
87 Use["Likelihood"] = 1;
88 Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings)
89 Use["LikelihoodPCA"] = 1; // the "PCA" extension indicates PCA-transformed input variables (see option strings)
90 Use["LikelihoodKDE"] = 0;
91 Use["LikelihoodMIX"] = 0;
92 //
93 // Mutidimensional likelihood and Nearest-Neighbour methods
94 Use["PDERS"] = 1;
95 Use["PDERSD"] = 0;
96 Use["PDERSPCA"] = 0;
97 Use["PDEFoam"] = 1;
98 Use["PDEFoamBoost"] = 0; // uses generalised MVA method boosting
99 Use["KNN"] = 1; // k-nearest neighbour method
100 //
101 // Linear Discriminant Analysis
102 Use["LD"] = 1; // Linear Discriminant identical to Fisher
103 Use["Fisher"] = 0;
104 Use["FisherG"] = 0;
105 Use["BoostedFisher"] = 0; // uses generalised MVA method boosting
106 Use["HMatrix"] = 0;
107 //
108 // Function Discriminant analysis
109 Use["FDA_GA"] = 1; // minimisation of user-defined function using Genetics Algorithm
110 Use["FDA_SA"] = 0;
111 Use["FDA_MC"] = 0;
112 Use["FDA_MT"] = 0;
113 Use["FDA_GAMT"] = 0;
114 Use["FDA_MCMT"] = 0;
115 //
116 // Neural Networks (all are feed-forward Multilayer Perceptrons)
117 Use["MLP"] = 0; // Recommended ANN
118 Use["MLPBFGS"] = 0; // Recommended ANN with optional training method
119 Use["MLPBNN"] = 1; // Recommended ANN with BFGS training method and bayesian regulator
120 Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH
121 Use["TMlpANN"] = 0; // ROOT's own ANN
122 Use["DNN_GPU"] = 0; // CUDA-accelerated DNN training.
123 Use["DNN_CPU"] = 0; // Multi-core accelerated DNN.
124 //
125 // Support Vector Machine
126 Use["SVM"] = 1;
127 //
128 // Boosted Decision Trees
129 Use["BDT"] = 1; // uses Adaptive Boost
130 Use["BDTG"] = 0; // uses Gradient Boost
131 Use["BDTB"] = 0; // uses Bagging
132 Use["BDTD"] = 0; // decorrelation + Adaptive Boost
133 Use["BDTF"] = 0; // allow usage of fisher discriminant for node splitting
134 //
135 // Friedman's RuleFit method, ie, an optimised series of cuts ("rules")
136 Use["RuleFit"] = 1;
137 // ---------------------------------------------------------------
138
139 std::cout << std::endl;
140 std::cout << "==> Start TMVAClassification" << std::endl;
141
142 // Select methods (don't look at this code - not of interest)
143 if (myMethodList != "") {
144 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
145
146 std::vector<TString> mlist = TMVA::gTools().SplitString( myMethodList, ',' );
147 for (UInt_t i=0; i<mlist.size(); i++) {
148 std::string regMethod(mlist[i]);
149
150 if (Use.find(regMethod) == Use.end()) {
151 std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
152 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
153 std::cout << std::endl;
154 return 1;
155 }
156 Use[regMethod] = 1;
157 }
158 }
159
160 // --------------------------------------------------------------------------------------------------
161
162 // Here the preparation phase begins
163
164 // Read training and test data
165 // (it is also possible to use ASCII format as input -> see TMVA Users Guide)
166 TFile *input(0);
167 TString fname = "./tmva_class_example.root";
168 if (!gSystem->AccessPathName( fname )) {
169 input = TFile::Open( fname ); // check if file in local directory exists
170 }
171 else {
173 input = TFile::Open("http://root.cern.ch/files/tmva_class_example.root", "CACHEREAD");
174 }
175 if (!input) {
176 std::cout << "ERROR: could not open data file" << std::endl;
177 exit(1);
178 }
179 std::cout << "--- TMVAClassification : Using input file: " << input->GetName() << std::endl;
180
181 // Register the training and test trees
182
183 TTree *signalTree = (TTree*)input->Get("TreeS");
184 TTree *background = (TTree*)input->Get("TreeB");
185
186 // Create a ROOT output file where TMVA will store ntuples, histograms, etc.
187 TString outfileName( "TMVA.root" );
188 TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
189
190 // Create the factory object. Later you can choose the methods
191 // whose performance you'd like to investigate. The factory is
192 // the only TMVA object you have to interact with
193 //
194 // The first argument is the base of the name of all the
195 // weightfiles in the directory weight/
196 //
197 // The second argument is the output file for the training results
198 // All TMVA output can be suppressed by removing the "!" (not) in
199 // front of the "Silent" argument in the option string
200 TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
201 "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" );
202
204 // If you wish to modify default settings
205 // (please check "src/Config.h" to see all available global options)
206 //
207 // (TMVA::gConfig().GetVariablePlotting()).fTimesRMS = 8.0;
208 // (TMVA::gConfig().GetIONames()).fWeightFileDir = "myWeightDirectory";
209
210 // Define the input variables that shall be used for the MVA training
211 // note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
212 // [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
213 dataloader->AddVariable( "myvar1 := var1+var2", 'F' );
214 dataloader->AddVariable( "myvar2 := var1-var2", "Expression 2", "", 'F' );
215 dataloader->AddVariable( "var3", "Variable 3", "units", 'F' );
216 dataloader->AddVariable( "var4", "Variable 4", "units", 'F' );
217
218 // You can add so-called "Spectator variables", which are not used in the MVA training,
219 // but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the
220 // input variables, the response values of all trained MVAs, and the spectator variables
221
222 dataloader->AddSpectator( "spec1 := var1*2", "Spectator 1", "units", 'F' );
223 dataloader->AddSpectator( "spec2 := var1*3", "Spectator 2", "units", 'F' );
224
225
226 // global event weights per tree (see below for setting event-wise weights)
227 Double_t signalWeight = 1.0;
228 Double_t backgroundWeight = 1.0;
229
230 // You can add an arbitrary number of signal or background trees
231 dataloader->AddSignalTree ( signalTree, signalWeight );
232 dataloader->AddBackgroundTree( background, backgroundWeight );
233
234 // To give different trees for training and testing, do as follows:
235 //
236 // dataloader->AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" );
237 // dataloader->AddSignalTree( signalTestTree, signalTestWeight, "Test" );
238
239 // Use the following code instead of the above two or four lines to add signal and background
240 // training and test events "by hand"
241 // NOTE that in this case one should not give expressions (such as "var1+var2") in the input
242 // variable definition, but simply compute the expression before adding the event
243 // ```cpp
244 // // --- begin ----------------------------------------------------------
245 // std::vector<Double_t> vars( 4 ); // vector has size of number of input variables
246 // Float_t treevars[4], weight;
247 //
248 // // Signal
249 // for (UInt_t ivar=0; ivar<4; ivar++) signalTree->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
250 // for (UInt_t i=0; i<signalTree->GetEntries(); i++) {
251 // signalTree->GetEntry(i);
252 // for (UInt_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
253 // // add training and test events; here: first half is training, second is testing
254 // // note that the weight can also be event-wise
255 // if (i < signalTree->GetEntries()/2.0) dataloader->AddSignalTrainingEvent( vars, signalWeight );
256 // else dataloader->AddSignalTestEvent ( vars, signalWeight );
257 // }
258 //
259 // // Background (has event weights)
260 // background->SetBranchAddress( "weight", &weight );
261 // for (UInt_t ivar=0; ivar<4; ivar++) background->SetBranchAddress( Form( "var%i", ivar+1 ), &(treevars[ivar]) );
262 // for (UInt_t i=0; i<background->GetEntries(); i++) {
263 // background->GetEntry(i);
264 // for (UInt_t ivar=0; ivar<4; ivar++) vars[ivar] = treevars[ivar];
265 // // add training and test events; here: first half is training, second is testing
266 // // note that the weight can also be event-wise
267 // if (i < background->GetEntries()/2) dataloader->AddBackgroundTrainingEvent( vars, backgroundWeight*weight );
268 // else dataloader->AddBackgroundTestEvent ( vars, backgroundWeight*weight );
269 // }
270 // // --- end ------------------------------------------------------------
271 // ```
272 // End of tree registration
273
274 // Set individual event weights (the variables must exist in the original TTree)
275 // - for signal : `dataloader->SetSignalWeightExpression ("weight1*weight2");`
276 // - for background: `dataloader->SetBackgroundWeightExpression("weight1*weight2");`
277 dataloader->SetBackgroundWeightExpression( "weight" );
278
279 // Apply additional cuts on the signal and background samples (can be different)
280 TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
281 TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";
282
283 // Tell the dataloader how to use the training and testing events
284 //
285 // If no numbers of events are given, half of the events in the tree are used
286 // for training, and the other half for testing:
287 //
288 // dataloader->PrepareTrainingAndTestTree( mycut, "SplitMode=random:!V" );
289 //
290 // To also specify the number of testing events, use:
291 //
292 // dataloader->PrepareTrainingAndTestTree( mycut,
293 // "NSigTrain=3000:NBkgTrain=3000:NSigTest=3000:NBkgTest=3000:SplitMode=Random:!V" );
294 dataloader->PrepareTrainingAndTestTree( mycuts, mycutb,
295 "nTrain_Signal=1000:nTrain_Background=1000:SplitMode=Random:NormMode=NumEvents:!V" );
296
297 // ### Book MVA methods
298 //
299 // Please lookup the various method configuration options in the corresponding cxx files, eg:
300 // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
301 // it is possible to preset ranges in the option string in which the cut optimisation should be done:
302 // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable
303
304 // Cut optimisation
305 if (Use["Cuts"])
306 factory->BookMethod( dataloader, TMVA::Types::kCuts, "Cuts",
307 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" );
308
309 if (Use["CutsD"])
310 factory->BookMethod( dataloader, TMVA::Types::kCuts, "CutsD",
311 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" );
312
313 if (Use["CutsPCA"])
314 factory->BookMethod( dataloader, TMVA::Types::kCuts, "CutsPCA",
315 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA" );
316
317 if (Use["CutsGA"])
318 factory->BookMethod( dataloader, TMVA::Types::kCuts, "CutsGA",
319 "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95" );
320
321 if (Use["CutsSA"])
322 factory->BookMethod( dataloader, TMVA::Types::kCuts, "CutsSA",
323 "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );
324
325 // Likelihood ("naive Bayes estimator")
326 if (Use["Likelihood"])
327 factory->BookMethod( dataloader, TMVA::Types::kLikelihood, "Likelihood",
328 "H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );
329
330 // Decorrelated likelihood
331 if (Use["LikelihoodD"])
332 factory->BookMethod( dataloader, TMVA::Types::kLikelihood, "LikelihoodD",
333 "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate" );
334
335 // PCA-transformed likelihood
336 if (Use["LikelihoodPCA"])
337 factory->BookMethod( dataloader, TMVA::Types::kLikelihood, "LikelihoodPCA",
338 "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA" );
339
340 // Use a kernel density estimator to approximate the PDFs
341 if (Use["LikelihoodKDE"])
342 factory->BookMethod( dataloader, TMVA::Types::kLikelihood, "LikelihoodKDE",
343 "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50" );
344
345 // Use a variable-dependent mix of splines and kernel density estimator
346 if (Use["LikelihoodMIX"])
347 factory->BookMethod( dataloader, TMVA::Types::kLikelihood, "LikelihoodMIX",
348 "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" );
349
350 // Test the multi-dimensional probability density estimator
351 // here are the options strings for the MinMax and RMS methods, respectively:
352 //
353 // "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );
354 // "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );
355 if (Use["PDERS"])
356 factory->BookMethod( dataloader, TMVA::Types::kPDERS, "PDERS",
357 "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" );
358
359 if (Use["PDERSD"])
360 factory->BookMethod( dataloader, TMVA::Types::kPDERS, "PDERSD",
361 "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate" );
362
363 if (Use["PDERSPCA"])
364 factory->BookMethod( dataloader, TMVA::Types::kPDERS, "PDERSPCA",
365 "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA" );
366
367 // Multi-dimensional likelihood estimator using self-adapting phase-space binning
368 if (Use["PDEFoam"])
369 factory->BookMethod( dataloader, TMVA::Types::kPDEFoam, "PDEFoam",
370 "!H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" );
371
372 if (Use["PDEFoamBoost"])
373 factory->BookMethod( dataloader, TMVA::Types::kPDEFoam, "PDEFoamBoost",
374 "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T" );
375
376 // K-Nearest Neighbour classifier (KNN)
377 if (Use["KNN"])
378 factory->BookMethod( dataloader, TMVA::Types::kKNN, "KNN",
379 "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );
380
381 // H-Matrix (chi2-squared) method
382 if (Use["HMatrix"])
383 factory->BookMethod( dataloader, TMVA::Types::kHMatrix, "HMatrix", "!H:!V:VarTransform=None" );
384
385 // Linear discriminant (same as Fisher discriminant)
386 if (Use["LD"])
387 factory->BookMethod( dataloader, TMVA::Types::kLD, "LD", "H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
388
389 // Fisher discriminant (same as LD)
390 if (Use["Fisher"])
391 factory->BookMethod( dataloader, TMVA::Types::kFisher, "Fisher", "H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
392
393 // Fisher with Gauss-transformed input variables
394 if (Use["FisherG"])
395 factory->BookMethod( dataloader, TMVA::Types::kFisher, "FisherG", "H:!V:VarTransform=Gauss" );
396
397 // Composite classifier: ensemble (tree) of boosted Fisher classifiers
398 if (Use["BoostedFisher"])
399 factory->BookMethod( dataloader, TMVA::Types::kFisher, "BoostedFisher",
400 "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2:!Boost_DetailedMonitoring" );
401
402 // Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
403 if (Use["FDA_MC"])
404 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_MC",
405 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1" );
406
407 if (Use["FDA_GA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options])
408 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_GA",
409 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=100:Cycles=2:Steps=5:Trim=True:SaveBestGen=1" );
410
411 if (Use["FDA_SA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options])
412 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_SA",
413 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );
414
415 if (Use["FDA_MT"])
416 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_MT",
417 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );
418
419 if (Use["FDA_GAMT"])
420 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_GAMT",
421 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );
422
423 if (Use["FDA_MCMT"])
424 factory->BookMethod( dataloader, TMVA::Types::kFDA, "FDA_MCMT",
425 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );
426
427 // TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
428 if (Use["MLP"])
429 factory->BookMethod( dataloader, TMVA::Types::kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator" );
430
431 if (Use["MLPBFGS"])
432 factory->BookMethod( dataloader, TMVA::Types::kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator" );
433
434 if (Use["MLPBNN"])
435 factory->BookMethod( dataloader, TMVA::Types::kMLP, "MLPBNN", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=60:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator" ); // BFGS training with bayesian regulators
436
437
438 // Multi-architecture DNN implementation.
439 if (Use["DNN_CPU"] or Use["DNN_GPU"]) {
440 // General layout.
441 TString layoutString ("Layout=TANH|128,TANH|128,TANH|128,LINEAR");
442
443 // Training strategies.
444 TString training0("LearningRate=1e-1,Momentum=0.9,Repetitions=1,"
445 "ConvergenceSteps=20,BatchSize=256,TestRepetitions=10,"
446 "WeightDecay=1e-4,Regularization=L2,"
447 "DropConfig=0.0+0.5+0.5+0.5, Multithreading=True");
448 TString training1("LearningRate=1e-2,Momentum=0.9,Repetitions=1,"
449 "ConvergenceSteps=20,BatchSize=256,TestRepetitions=10,"
450 "WeightDecay=1e-4,Regularization=L2,"
451 "DropConfig=0.0+0.0+0.0+0.0, Multithreading=True");
452 TString training2("LearningRate=1e-3,Momentum=0.0,Repetitions=1,"
453 "ConvergenceSteps=20,BatchSize=256,TestRepetitions=10,"
454 "WeightDecay=1e-4,Regularization=L2,"
455 "DropConfig=0.0+0.0+0.0+0.0, Multithreading=True");
456 TString trainingStrategyString ("TrainingStrategy=");
457 trainingStrategyString += training0 + "|" + training1 + "|" + training2;
458
459 // General Options.
460 TString dnnOptions ("!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:"
461 "WeightInitialization=XAVIERUNIFORM");
462 dnnOptions.Append (":"); dnnOptions.Append (layoutString);
463 dnnOptions.Append (":"); dnnOptions.Append (trainingStrategyString);
464
465 // Cuda implementation.
466 if (Use["DNN_GPU"]) {
467 TString gpuOptions = dnnOptions + ":Architecture=GPU";
468 factory->BookMethod(dataloader, TMVA::Types::kDNN, "DNN_GPU", gpuOptions);
469 }
470 // Multi-core CPU implementation.
471 if (Use["DNN_CPU"]) {
472 TString cpuOptions = dnnOptions + ":Architecture=CPU";
473 factory->BookMethod(dataloader, TMVA::Types::kDNN, "DNN_CPU", cpuOptions);
474 }
475 }
476
477 // CF(Clermont-Ferrand)ANN
478 if (Use["CFMlpANN"])
479 factory->BookMethod( dataloader, TMVA::Types::kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N" ); // n_cycles:#nodes:#nodes:...
480
481 // Tmlp(Root)ANN
482 if (Use["TMlpANN"])
483 factory->BookMethod( dataloader, TMVA::Types::kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3" ); // n_cycles:#nodes:#nodes:...
484
485 // Support Vector Machine
486 if (Use["SVM"])
487 factory->BookMethod( dataloader, TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );
488
489 // Boosted Decision Trees
490 if (Use["BDTG"]) // Gradient Boost
491 factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDTG",
492 "!H:!V:NTrees=1000:MinNodeSize=2.5%:BoostType=Grad:Shrinkage=0.10:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=2" );
493
494 if (Use["BDT"]) // Adaptive Boost
495 factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDT",
496 "!H:!V:NTrees=850:MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20" );
497
498 if (Use["BDTB"]) // Bagging
499 factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDTB",
500 "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20" );
501
502 if (Use["BDTD"]) // Decorrelation + Adaptive Boost
503 factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDTD",
504 "!H:!V:NTrees=400:MinNodeSize=5%:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:VarTransform=Decorrelate" );
505
506 if (Use["BDTF"]) // Allow Using Fisher discriminant in node splitting for (strong) linearly correlated variables
507 factory->BookMethod( dataloader, TMVA::Types::kBDT, "BDTF",
508 "!H:!V:NTrees=50:MinNodeSize=2.5%:UseFisherCuts:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20" );
509
510 // RuleFit -- TMVA implementation of Friedman's method
511 if (Use["RuleFit"])
512 factory->BookMethod( dataloader, TMVA::Types::kRuleFit, "RuleFit",
513 "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" );
514
515 // For an example of the category classifier usage, see: TMVAClassificationCategory
516 //
517 // --------------------------------------------------------------------------------------------------
518 // Now you can optimize the setting (configuration) of the MVAs using the set of training events
519 // STILL EXPERIMENTAL and only implemented for BDT's !
520 //
521 // factory->OptimizeAllMethods("SigEffAt001","Scan");
522 // factory->OptimizeAllMethods("ROCIntegral","FitGA");
523 //
524 // --------------------------------------------------------------------------------------------------
525
526 // Now you can tell the factory to train, test, and evaluate the MVAs
527 //
528 // Train MVAs using the set of training events
529 factory->TrainAllMethods();
530
531 // Evaluate all MVAs using the set of test events
532 factory->TestAllMethods();
533
534 // Evaluate and compare performance of all configured MVAs
535 factory->EvaluateAllMethods();
536
537 // --------------------------------------------------------------
538
539 // Save the output
540 outputFile->Close();
541
542 std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
543 std::cout << "==> TMVAClassification is done!" << std::endl;
544
545 delete factory;
546 delete dataloader;
547 // Launch the GUI for the root macros
548 if (!gROOT->IsBatch()) TMVA::TMVAGui( outfileName );
549
550 return 0;
551}
552
553int main( int argc, char** argv )
554{
555 // Select methods (don't look at this code - not of interest)
556 TString methodList;
557 for (int i=1; i<argc; i++) {
558 TString regMethod(argv[i]);
559 if(regMethod=="-b" || regMethod=="--batch") continue;
560 if (!methodList.IsNull()) methodList += TString(",");
561 methodList += regMethod;
562 }
563 return TMVAClassification(methodList);
564}
unsigned int UInt_t
Definition: RtypesCore.h:42
double Double_t
Definition: RtypesCore.h:55
#define gROOT
Definition: TROOT.h:410
R__EXTERN TSystem * gSystem
Definition: TSystem.h:540
A specialized string object used for TTree selections.
Definition: TCut.h:25
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
Definition: TFile.h:48
virtual void Close(Option_t *option="")
Close a file.
Definition: TFile.cxx:912
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
Definition: TFile.h:316
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseGeneralPurpose, Int_t netopt=0)
Create / open a file.
Definition: TFile.cxx:3975
This is the main MVA steering class.
Definition: Factory.h:81
static Tools & Instance()
Definition: Tools.cxx:75
std::vector< TString > SplitString(const TString &theOpt, const char separator) const
splits the option string at 'separator' and fills the list 'splitV' with the primitive strings
Definition: Tools.cxx:1211
@ kFisher
Definition: Types.h:84
@ kTMlpANN
Definition: Types.h:87
@ kFDA
Definition: Types.h:94
@ kBDT
Definition: Types.h:88
@ kPDERS
Definition: Types.h:82
@ kPDEFoam
Definition: Types.h:96
@ kLikelihood
Definition: Types.h:81
@ kCuts
Definition: Types.h:80
@ kHMatrix
Definition: Types.h:83
@ kSVM
Definition: Types.h:91
@ kRuleFit
Definition: Types.h:90
@ kCFMlpANN
Definition: Types.h:86
@ kKNN
Definition: Types.h:85
@ kMLP
Definition: Types.h:92
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
Basic string class.
Definition: TString.h:131
Bool_t IsNull() const
Definition: TString.h:402
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
Definition: TSystem.cxx:1286
A TTree object has a header with a name and a title.
Definition: TTree.h:71
int main(int argc, char **argv)
Tools & gTools()
void TMVAGui(const char *fName="TMVA.root", TString dataset="")