77 x(
"x",
"Observable",this,_x),
78 gamma(
"gamma",
"Mean",this,_gamma),
79 beta(
"beta",
"Width",this,_beta),
80 mu(
"mu",
"Para",this,_mu)
88 beta(
"beta",this,other.
beta), mu(
"mu",this,other.mu)
124 if (
matchArgs(directVars,generateVars,
x))
return 1 ;
155 if( u < 1.-.0331*(xgen*xgen)*(xgen*xgen) ) {
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Bool_t matchArgs(const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a) const
Utility function for use in getAnalyticalIntegral().
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Implementation of the Gamma PDF for RooFit/RooStats.
Double_t evaluate() const
Evaluate this PDF / function / constant. Needs to be overridden by all derived classes.
void generateEvent(Int_t code)
algorithm adapted from code example in: Marsaglia, G.
Int_t getGenerator(const RooArgSet &directVars, RooArgSet &generateVars, Bool_t staticInitOK=kTRUE) const
Load generatedVars with the subset of directVars that we can generate events for, and return a code t...
Int_t getAnalyticalIntegral(RooArgSet &allVars, RooArgSet &analVars, const char *rangeName=0) const
Interface function getAnalyticalIntergral advertises the analytical integrals that are supported.
Double_t analyticalIntegral(Int_t code, const char *rangeName=0) const
Implements the actual analytical integral(s) advertised by getAnalyticalIntegral.
static TRandom * randomGenerator()
Return a pointer to a singleton random-number generator implementation.
Double_t min(const char *rname=0) const
Double_t max(const char *rname=0) const
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
double gamma_cdf(double x, double alpha, double theta, double x0=0)
Cumulative distribution function of the gamma distribution (lower tail).
double beta(double x, double y)
Calculates the beta function.
Double_t Sqrt(Double_t x)
Double_t GammaDist(Double_t x, Double_t gamma, Double_t mu=0, Double_t beta=1)
Computes the density function of Gamma distribution at point x.