Logo ROOT   6.16/01
Reference Guide
RooGamma.cxx
Go to the documentation of this file.
1 /*****************************************************************************
2 * Project: RooFit *
3 * *
4 * Simple Gamma distribution
5 * authors: Stefan A. Schmitz, Gregory Schott
6 * *
7 *****************************************************************************/
8
9/** \class RooGamma
10 \ingroup Roofit
11
12Implementation of the Gamma PDF for RooFit/RooStats.
13\f[
14f(x) = \frac{(x-\mu)^{\gamma-1} \cdot \exp^{(-(x-mu) / \beta}}{\Gamma(\gamma) \cdot \beta^{\gamma}}
15\f]
16defined for \f$ x \geq 0 \f$ if \f$ \mu = 0 \f$
17
18Notes from Kyle Cranmer:
19
20Wikipedia and several sources refer to the Gamma distribution as
21
22\f[
23G(\mu,\alpha,\beta) = \beta^\alpha \mu^{(\alpha-1)} \frac{e^{(-\beta \mu)}}{\Gamma(\alpha)}
24\f]
25
26Below is the correspondance:
27
28| Wikipedia | This Implementation |
29|-----------------|--------------------------|
30| \f$ \alpha \f$ | \f$ \gamma \f$ |
31| \f$ \beta \f$ | \f$ \frac{1}{\beta} \f$ |
32| \f$ \mu \f$ | x |
33| 0 | \f$ \mu \f$ |
34
35
36Note, that for a model Pois(N|mu), a uniform prior on mu, and a measurement N
37the posterior is in the Wikipedia parameterization Gamma(mu, alpha=N+1, beta=1)
38thus for this implementation it is:
39
40`RooGamma(_x=mu,_gamma=N+1,_beta=1,_mu=0)`
41
42Also note, that in this case it is equivalent to
43RooPoison(N,mu) and treating the function as a PDF in mu.
44**/
45
46#include "RooFit.h"
47
48#include "Riostream.h"
49#include "Riostream.h"
50#include <math.h>
51
52#include "RooGamma.h"
53#include "RooAbsReal.h"
54#include "RooRealVar.h"
55#include "RooRandom.h"
56#include "RooMath.h"
57
58#include <iostream>
59#include "TMath.h"
60
64
65#include "TError.h"
66
67using namespace std;
68
70
71////////////////////////////////////////////////////////////////////////////////
72
73RooGamma::RooGamma(const char *name, const char *title,
74 RooAbsReal& _x, RooAbsReal& _gamma,
75 RooAbsReal& _beta, RooAbsReal& _mu) :
76 RooAbsPdf(name,title),
77 x("x","Observable",this,_x),
78 gamma("gamma","Mean",this,_gamma),
79 beta("beta","Width",this,_beta),
80 mu("mu","Para",this,_mu)
81{
82}
83
84////////////////////////////////////////////////////////////////////////////////
85
86RooGamma::RooGamma(const RooGamma& other, const char* name) :
87 RooAbsPdf(other,name), x("x",this,other.x), gamma("mean",this,other.gamma),
88 beta("beta",this,other.beta), mu("mu",this,other.mu)
89{
90}
91
92////////////////////////////////////////////////////////////////////////////////
93
95{
96 Double_t arg= x ;
97 Double_t ret = TMath::GammaDist(arg, gamma, mu, beta) ;
98 return ret ;
99}
100
101////////////////////////////////////////////////////////////////////////////////
102
103Int_t RooGamma::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char* /*rangeName*/) const
104{
105 if (matchArgs(allVars,analVars,x)) return 1 ;
106 return 0 ;
107}
108
109////////////////////////////////////////////////////////////////////////////////
110
111Double_t RooGamma::analyticalIntegral(Int_t code, const char* rangeName) const
112{
113 R__ASSERT(code==1) ;
114
115 //integral of the Gamma distribution via ROOT::Math
116 Double_t integral = ROOT::Math::gamma_cdf(x.max(rangeName), gamma, beta, mu) - ROOT::Math::gamma_cdf(x.min(rangeName), gamma, beta, mu);
117 return integral ;
118}
119
120////////////////////////////////////////////////////////////////////////////////
121
122Int_t RooGamma::getGenerator(const RooArgSet& directVars, RooArgSet &generateVars, Bool_t /*staticInitOK*/) const
123{
124 if (matchArgs(directVars,generateVars,x)) return 1 ;
125 return 0 ;
126}
127
128////////////////////////////////////////////////////////////////////////////////
129/// algorithm adapted from code example in:
130/// Marsaglia, G. and Tsang, W. W.
131/// A Simple Method for Generating Gamma Variables
132/// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000
133///
134/// The speed of this algorithm depends on the speed of generating normal variates.
135/// The algorithm is limited to \f$ \gamma \geq 0 \f$ !
136
138{
139 R__ASSERT(code==1) ;
140
141
142 while(1) {
143
144 double d = 0;
145 double c = 0;
146 double xgen = 0;
147 double v = 0;
148 double u = 0;
149 d = gamma -1./3.; c = 1./TMath::Sqrt(9.*d);
150
151 while(v <= 0.){
152 xgen = RooRandom::randomGenerator()->Gaus(); v = 1. + c*xgen;
153 }
155 if( u < 1.-.0331*(xgen*xgen)*(xgen*xgen) ) {
156 if ( (((d*v)* beta + mu ) < x.max()) && (((d*v)* beta + mu) > x.min()) ) {
157 x = ((d*v)* beta + mu) ;
158 break;
159 }
160 }
161 if( TMath::Log(u) < 0.5*xgen*xgen + d*(1.-v + TMath::Log(v)) ) {
162 if ( (((d*v)* beta + mu ) < x.max()) && (((d*v)* beta + mu) > x.min()) ) {
163 x = ((d*v)* beta + mu) ;
164 break;
165 }
166 }
167
168 }
169
170
171 return;
172}
SVector< double, 2 > v
Definition: Dict.h:5
#define d(i)
Definition: RSha256.hxx:102
#define c(i)
Definition: RSha256.hxx:101
int Int_t
Definition: RtypesCore.h:41
bool Bool_t
Definition: RtypesCore.h:59
double Double_t
Definition: RtypesCore.h:55
#define ClassImp(name)
Definition: Rtypes.h:363
#define R__ASSERT(e)
Definition: TError.h:96
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition: RooAbsReal.h:53
Bool_t matchArgs(const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a) const
Utility function for use in getAnalyticalIntegral().
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Implementation of the Gamma PDF for RooFit/RooStats.
Definition: RooGamma.h:22
Double_t evaluate() const
Evaluate this PDF / function / constant. Needs to be overridden by all derived classes.
Definition: RooGamma.cxx:94
void generateEvent(Int_t code)
algorithm adapted from code example in: Marsaglia, G.
Definition: RooGamma.cxx:137
Int_t getGenerator(const RooArgSet &directVars, RooArgSet &generateVars, Bool_t staticInitOK=kTRUE) const
Load generatedVars with the subset of directVars that we can generate events for, and return a code t...
Definition: RooGamma.cxx:122
RooRealProxy beta
Definition: RooGamma.h:41
Int_t getAnalyticalIntegral(RooArgSet &allVars, RooArgSet &analVars, const char *rangeName=0) const
Interface function getAnalyticalIntergral advertises the analytical integrals that are supported.
Definition: RooGamma.cxx:103
RooGamma()
Definition: RooGamma.h:24
RooRealProxy x
Definition: RooGamma.h:39
RooRealProxy gamma
Definition: RooGamma.h:40
RooRealProxy mu
Definition: RooGamma.h:42
Double_t analyticalIntegral(Int_t code, const char *rangeName=0) const
Implements the actual analytical integral(s) advertised by getAnalyticalIntegral.
Definition: RooGamma.cxx:111
static TRandom * randomGenerator()
Return a pointer to a singleton random-number generator implementation.
Definition: RooRandom.cxx:54
Double_t min(const char *rname=0) const
Definition: RooRealProxy.h:56
Double_t max(const char *rname=0) const
Definition: RooRealProxy.h:57
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:256
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
Definition: TRandom.cxx:627
double gamma_cdf(double x, double alpha, double theta, double x0=0)
Cumulative distribution function of the gamma distribution (lower tail).
double beta(double x, double y)
Calculates the beta function.
Double_t x[n]
Definition: legend1.C:17
double gamma(double x)
Double_t Log(Double_t x)
Definition: TMath.h:748
Double_t Sqrt(Double_t x)
Definition: TMath.h:679
Double_t GammaDist(Double_t x, Double_t gamma, Double_t mu=0, Double_t beta=1)
Computes the density function of Gamma distribution at point x.
Definition: TMath.cxx:2315
STL namespace.