Logo ROOT   6.16/01
Reference Guide
RooBifurGauss.cxx
Go to the documentation of this file.
1/*****************************************************************************
2 * Project: RooFit *
3 * Package: RooFitModels *
4 * @(#)root/roofit:$Id$
5 * Authors: *
6 * Abi Soffer, Colorado State University, abi@slac.stanford.edu *
7 * *
8 * Copyright (c) 2000-2005, Regents of the University of California, *
9 * Colorado State University *
10 * and Stanford University. All rights reserved. *
11 * *
12 * Redistribution and use in source and binary forms, *
13 * with or without modification, are permitted according to the terms *
14 * listed in LICENSE (http://roofit.sourceforge.net/license.txt) *
15 *****************************************************************************/
16#include "RooFit.h"
17
18/** \class RooBifurGauss
19 \ingroup Roofit
20
21Bifurcated Gaussian p.d.f with different widths on left and right
22side of maximum value
23**/
24
25
26#include "Riostream.h"
27#include "TMath.h"
28#include <math.h>
29
30#include "RooBifurGauss.h"
31#include "RooAbsReal.h"
32#include "RooMath.h"
33
34using namespace std;
35
37
38////////////////////////////////////////////////////////////////////////////////
39
40RooBifurGauss::RooBifurGauss(const char *name, const char *title,
41 RooAbsReal& _x, RooAbsReal& _mean,
42 RooAbsReal& _sigmaL, RooAbsReal& _sigmaR) :
43 RooAbsPdf(name, title),
44 x ("x" , "Dependent" , this, _x),
45 mean ("mean" , "Mean" , this, _mean),
46 sigmaL("sigmaL", "Left Sigma" , this, _sigmaL),
47 sigmaR("sigmaR", "Right Sigma", this, _sigmaR)
48
49{
50}
51
52////////////////////////////////////////////////////////////////////////////////
53
55 RooAbsPdf(other,name), x("x",this,other.x), mean("mean",this,other.mean),
56 sigmaL("sigmaL",this,other.sigmaL), sigmaR("sigmaR", this, other.sigmaR)
57{
58}
59
60////////////////////////////////////////////////////////////////////////////////
61
63 Double_t arg = x - mean;
64
65 Double_t coef(0.0);
66
67 if (arg < 0.0){
68 if (TMath::Abs(sigmaL) > 1e-30) {
69 coef = -0.5/(sigmaL*sigmaL);
70 }
71 } else {
72 if (TMath::Abs(sigmaR) > 1e-30) {
73 coef = -0.5/(sigmaR*sigmaR);
74 }
75 }
76
77 return exp(coef*arg*arg);
78}
79
80////////////////////////////////////////////////////////////////////////////////
81
82Int_t RooBifurGauss::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char* /*rangeName*/) const
83{
84 if (matchArgs(allVars,analVars,x)) return 1 ;
85 return 0 ;
86}
87
88////////////////////////////////////////////////////////////////////////////////
89
90Double_t RooBifurGauss::analyticalIntegral(Int_t code, const char* rangeName) const
91{
92 switch(code) {
93 case 1:
94 {
95 static Double_t root2 = sqrt(2.) ;
96 static Double_t rootPiBy2 = sqrt(atan2(0.0,-1.0)/2.0);
97
98// Double_t coefL(0.0), coefR(0.0);
99// if (TMath::Abs(sigmaL) > 1e-30) {
100// coefL = -0.5/(sigmaL*sigmaL);
101// }
102
103// if (TMath::Abs(sigmaR) > 1e-30) {
104// coefR = -0.5/(sigmaR*sigmaR);
105// }
106
107 Double_t xscaleL = root2*sigmaL;
108 Double_t xscaleR = root2*sigmaR;
109
110 Double_t integral = 0.0;
111 if(x.max(rangeName) < mean)
112 {
113 integral = sigmaL * ( RooMath::erf((x.max(rangeName) - mean)/xscaleL) - RooMath::erf((x.min(rangeName) - mean)/xscaleL) );
114 }
115 else if (x.min(rangeName) > mean)
116 {
117 integral = sigmaR * ( RooMath::erf((x.max(rangeName) - mean)/xscaleR) - RooMath::erf((x.min(rangeName) - mean)/xscaleR) );
118 }
119 else
120 {
121 integral = sigmaR*RooMath::erf((x.max(rangeName) - mean)/xscaleR) - sigmaL*RooMath::erf((x.min(rangeName) - mean)/xscaleL);
122 }
123 // return rootPiBy2*(sigmaR*RooMath::erf((x.max(rangeName) - mean)/xscaleR) -
124 // sigmaL*RooMath::erf((x.min(rangeName) - mean)/xscaleL));
125 return integral*rootPiBy2;
126 }
127 }
128
129 assert(0) ;
130 return 0 ; // to prevent compiler warnings
131}
#define e(i)
Definition: RSha256.hxx:103
int Int_t
Definition: RtypesCore.h:41
double Double_t
Definition: RtypesCore.h:55
#define ClassImp(name)
Definition: Rtypes.h:363
double atan2(double, double)
double sqrt(double)
double exp(double)
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition: RooAbsReal.h:53
Bool_t matchArgs(const RooArgSet &allDeps, RooArgSet &numDeps, const RooArgProxy &a) const
Utility function for use in getAnalyticalIntegral().
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
Bifurcated Gaussian p.d.f with different widths on left and right side of maximum value.
Definition: RooBifurGauss.h:24
RooRealProxy mean
Definition: RooBifurGauss.h:41
RooRealProxy sigmaL
Definition: RooBifurGauss.h:42
Int_t getAnalyticalIntegral(RooArgSet &allVars, RooArgSet &analVars, const char *rangeName=0) const
Interface function getAnalyticalIntergral advertises the analytical integrals that are supported.
Double_t evaluate() const
Evaluate this PDF / function / constant. Needs to be overridden by all derived classes.
RooRealProxy sigmaR
Definition: RooBifurGauss.h:43
Double_t analyticalIntegral(Int_t code, const char *rangeName=0) const
Implements the actual analytical integral(s) advertised by getAnalyticalIntegral.
RooRealProxy x
Definition: RooBifurGauss.h:40
static std::complex< double > erf(const std::complex< double > z)
complex erf function
Definition: RooMath.cxx:580
Double_t min(const char *rname=0) const
Definition: RooRealProxy.h:56
Double_t max(const char *rname=0) const
Definition: RooRealProxy.h:57
Double_t x[n]
Definition: legend1.C:17
Short_t Abs(Short_t d)
Definition: TMathBase.h:120
STL namespace.