Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.16/01
Reference Guide
•All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
ProfileLikelihoodCalculator.cxx
Go to the documentation of this file.
1// @(#)root/roostats:$Id$
2// Author: Kyle Cranmer 28/07/2008
3
4/*************************************************************************
5 * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12/** \class RooStats::ProfileLikelihoodCalculator
13 \ingroup Roostats
14
15ProfileLikelihoodCalculator is a concrete implementation of CombinedCalculator
16(the interface class for a tools which can produce both RooStats HypoTestResults
17and ConfIntervals). The tool uses the profile likelihood ratio as a test statistic,
18and assumes that Wilks' theorem is valid. Wilks' theorem states that -2* log
19(profile likelihood ratio) is asymptotically distributed as a chi^2 distribution
20with N-dof, where N is the number of degrees of freedom. Thus, p-values can be
21constructed and the profile likelihood ratio can be used to construct a
22LikelihoodInterval. (In the future, this class could be extended to use toy
23Monte Carlo to calibrate the distribution of the test statistic).
24
25Usage: It uses the interface of the CombinedCalculator, so that it can be
26configured by specifying:
27
28 - a model common model (eg. a family of specific models which includes both
29 the null and alternate),
30 - a data set,
31 - a set of parameters of interest. The nuisance parameters will be all other
32 parameters of the model
33 - a set of parameters of which specify the null hypothesis (including values
34 and const/non-const status)
35
36The interface allows one to pass the model, data, and parameters either directly
37or via a ModelConfig class. The alternate hypothesis leaves the parameter free
38to take any value other than those specified by the null hypotesis. There is
39therefore no need to specify the alternate parameters.
40
41After configuring the calculator, one only needs to ask GetHypoTest() (which
42will return a HypoTestResult pointer) or GetInterval() (which will return an
43ConfInterval pointer).
44
45This calculator can work with both one-dimensional intervals or multi-
46dimensional ones (contours)
47
48Note that for hypothesis tests, it is often better to use the
49RooStats::AsymptoricCalculator class, which can compute in addition the expected
50p-value using an Asimov data set.
51
52*/
53
55
57
60
61#include "RooFitResult.h"
62#include "RooRealVar.h"
63#include "RooProfileLL.h"
64#include "RooNLLVar.h"
65#include "RooGlobalFunc.h"
66#include "RooMsgService.h"
67
69#include "RooMinimizer.h"
70//#include "RooProdPdf.h"
71
72using namespace std;
73
75
76using namespace RooFit;
77using namespace RooStats;
78
79
80////////////////////////////////////////////////////////////////////////////////
81/// default constructor
82
83ProfileLikelihoodCalculator::ProfileLikelihoodCalculator() :
84 CombinedCalculator(), fFitResult(0), fGlobalFitDone(false)
85{
86}
87
89 Double_t size, const RooArgSet* nullParams ) :
90 CombinedCalculator(data,pdf, paramsOfInterest, size, nullParams ),
91 fFitResult(0), fGlobalFitDone(false)
92{
93 // constructor from pdf and parameters
94 // the pdf must contain eventually the nuisance parameters
95}
96
99 fFitResult(0), fGlobalFitDone(false)
100{
101 // construct from a ModelConfig. Assume data model.GetPdf() will provide full description of model including
102 // constraint term on the nuisances parameters
103 assert(model.GetPdf() );
104}
105
106
107////////////////////////////////////////////////////////////////////////////////
108/// destructor
109/// cannot delete prod pdf because it will delete all the composing pdf's
110/// if (fOwnPdf) delete fPdf;
111/// fPdf = 0;
112
114 if (fFitResult) delete fFitResult;
115}
116
118 // reset and clear fit result
119 // to be called when a new model or data are set in the calculator
120 if (fFitResult) delete fFitResult;
121 fFitResult = 0;
122}
123
125 // perform a global fit of the likelihood letting with all parameter of interest and
126 // nuisance parameters
127 // keep the list of fitted parameters
128
129 DoReset();
130 RooAbsPdf * pdf = GetPdf();
132 if (!data || !pdf ) return 0;
133
134 // get all non-const parameters
135 RooArgSet* constrainedParams = pdf->getParameters(*data);
136 if (!constrainedParams) return 0;
137 RemoveConstantParameters(constrainedParams);
138
139
141
142 // check if global fit has been already done
143 if (fFitResult && fGlobalFitDone) {
144 delete constrainedParams;
145 return nll;
146 }
147
148 // calculate MLE
149 oocoutP((TObject*)0,Minimization) << "ProfileLikelihoodCalcultor::DoGLobalFit - find MLE " << std::endl;
150
151 if (fFitResult) delete fFitResult;
153
154 // print fit result
155 if (fFitResult) {
157
158 if (fFitResult->status() != 0)
159 oocoutW((TObject*)0,Minimization) << "ProfileLikelihoodCalcultor::DoGlobalFit - Global fit failed - status = " << fFitResult->status() << std::endl;
160 else
161 fGlobalFitDone = true;
162 }
163
164 delete constrainedParams;
165 return nll;
166}
167
169 // Minimizer the given NLL using the default options
170
171 const char * minimType = ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str();
172 const char * minimAlgo = ROOT::Math::MinimizerOptions::DefaultMinimizerAlgo().c_str();
174 int level = ROOT::Math::MinimizerOptions::DefaultPrintLevel() -1;// RooFit level starts from -1
176 oocoutP((TObject*)0,Minimization) << "ProfileLikelihoodCalcultor::DoMinimizeNLL - using " << minimType << " / " << minimAlgo << " with strategy " << strategy << std::endl;
177 // do global fit and store fit result for further use
178
179 RooMinimizer minim(*nll);
180 minim.setStrategy(strategy);
181 minim.setEps(tolerance);
182 minim.setPrintLevel(level);
183 minim.optimizeConst(2); // to optimize likelihood calculations
184
185 int status = -1;
186 for (int tries = 1, maxtries = 4; tries <= maxtries; ++tries) {
187 status = minim.minimize(minimType,minimAlgo);
188 if (status%1000 == 0) { // ignore erros from Improve
189 break;
190 } else if (tries < maxtries) {
191 cout << " ----> Doing a re-scan first" << endl;
192 minim.minimize(minimType,"Scan");
193 if (tries == 2) {
194 if (strategy == 0 ) {
195 cout << " ----> trying with strategy = 1" << endl;;
196 minim.setStrategy(1);
197 }
198 else
199 tries++; // skip this trial if strategy is already 1
200 }
201 if (tries == 3) {
202 cout << " ----> trying with improve" << endl;;
203 minimType = "Minuit";
204 minimAlgo = "migradimproved";
205 }
206 }
207 }
208
209 RooFitResult * result = minim.save();
210
211
212 return result;
213}
214
215////////////////////////////////////////////////////////////////////////////////
216/// Main interface to get a RooStats::ConfInterval.
217/// It constructs a profile likelihood ratio and uses that to construct a RooStats::LikelihoodInterval.
218
220// RooAbsPdf* pdf = fWS->pdf(fPdfName);
221// RooAbsData* data = fWS->data(fDataName);
222 RooAbsPdf * pdf = GetPdf();
224 if (!data || !pdf || fPOI.getSize() == 0) return 0;
225
226 RooArgSet* constrainedParams = pdf->getParameters(*data);
227 RemoveConstantParameters(constrainedParams);
228
229
230 /*
231 RooNLLVar* nll = new RooNLLVar("nll","",*pdf,*data, Extended(),Constrain(*constrainedParams));
232 RooProfileLL* profile = new RooProfileLL("pll","",*nll, *fPOI);
233 profile->addOwnedComponents(*nll) ; // to avoid memory leak
234 */
235
236 // do a global fit cloning the data
237 RooAbsReal * nll = DoGlobalFit();
238 if (!nll) return 0;
239
240 if (!fFitResult) {
241 delete nll;
242 return 0;
243 }
244
245 RooAbsReal* profile = nll->createProfile(fPOI);
246 profile->addOwnedComponents(*nll) ; // to avoid memory leak
247
248 // t.b.f. " RooProfileLL should keep and provide possibility to query on global minimum
249 // set POI to fit value (this will speed up profileLL calculation of global minimum)
250 const RooArgList & fitParams = fFitResult->floatParsFinal();
251 for (int i = 0; i < fitParams.getSize(); ++i) {
252 RooRealVar & fitPar = (RooRealVar &) fitParams[i];
253 RooRealVar * par = (RooRealVar*) fPOI.find( fitPar.GetName() );
254 if (par) {
255 par->setVal( fitPar.getVal() );
256 par->setError( fitPar.getError() );
257 }
258 }
259
260 // do this so profile will cache inside the absolute minimum and
261 // minimum values of nuisance parameters
262 // (no need to this here)
263 // profile->getVal();
264 //RooMsgService::instance().setGlobalKillBelow(RooFit::DEBUG) ;
265 // profile->Print();
266
267 TString name = TString("LikelihoodInterval_");// + TString(GetName() );
268
269 // make a list of fPOI with fit result values and pass to LikelihoodInterval class
270 // bestPOI is a cloned list of POI only with their best fit values
271 TIter iter = fPOI.createIterator();
272 RooArgSet fitParSet(fitParams);
273 RooArgSet * bestPOI = new RooArgSet();
274 while (RooAbsArg * arg = (RooAbsArg*) iter.Next() ) {
275 RooAbsArg * p = fitParSet.find( arg->GetName() );
276 if (p) bestPOI->addClone(*p);
277 else bestPOI->addClone(*arg);
278 }
279 // fPOI contains the parameter of interest of the PL object
280 // and bestPOI contains a snapshot with the best fit values
281 LikelihoodInterval* interval = new LikelihoodInterval(name, profile, &fPOI, bestPOI);
282 interval->SetConfidenceLevel(1.-fSize);
283 delete constrainedParams;
284 return interval;
285}
286
287////////////////////////////////////////////////////////////////////////////////
288/// Main interface to get a HypoTestResult.
289/// It does two fits:
290/// the first lets the null parameters float, so it's a maximum likelihood estimate
291/// the second is to the null (fixing null parameters to their specified values): eg. a conditional maximum likelihood
292/// the ratio of the likelihood at the conditional MLE to the MLE is the profile likelihood ratio.
293/// Wilks' theorem is used to get p-values
294
296// RooAbsPdf* pdf = fWS->pdf(fPdfName);
297// RooAbsData* data = fWS->data(fDataName);
298 RooAbsPdf * pdf = GetPdf();
300
301
302 if (!data || !pdf) return 0;
303
304 if (fNullParams.getSize() == 0) return 0;
305
306 // make a clone and ordered list since a vector will be associated to keep parameter values
307 // clone the list since first fit will changes the fNullParams values
308 RooArgList poiList;
309 poiList.addClone(fNullParams); // make a clone list
310
311
312 // do a global fit
313 RooAbsReal * nll = DoGlobalFit();
314 if (!nll) return 0;
315
316 if (!fFitResult) {
317 delete nll;
318 return 0;
319 }
320
321 RooArgSet* constrainedParams = pdf->getParameters(*data);
322 RemoveConstantParameters(constrainedParams);
323
324 Double_t nLLatMLE = fFitResult->minNll();
325 // in case of using offset need to save offset value
326 Double_t nlloffset = (RooStats::IsNLLOffset() ) ? nll->getVal() - nLLatMLE : 0;
327
328 // set POI to given values, set constant, calculate conditional MLE
329 std::vector<double> oldValues(poiList.getSize() );
330 for (unsigned int i = 0; i < oldValues.size(); ++i) {
331 RooRealVar * mytarget = (RooRealVar*) constrainedParams->find(poiList[i].GetName());
332 if (mytarget) {
333 oldValues[i] = mytarget->getVal();
334 mytarget->setVal( ( (RooRealVar&) poiList[i] ).getVal() );
335 mytarget->setConstant(kTRUE);
336 }
337 }
338
339
340
341 // perform the fit only if nuisance parameters are available
342 // get nuisance parameters
343 // nuisance parameters are the non const parameters from the likelihood parameters
344 RooArgSet nuisParams(*constrainedParams);
345
346 // need to remove the parameter of interest
347 RemoveConstantParameters(&nuisParams);
348
349 // check there are variable parameter in order to do a fit
350 bool existVarParams = false;
351 TIter it = nuisParams.createIterator();
352 RooRealVar * myarg = 0;
353 while ((myarg = (RooRealVar *)it.Next())) {
354 if ( !myarg->isConstant() ) {
355 existVarParams = true;
356 break;
357 }
358 }
359
360 Double_t nLLatCondMLE = nLLatMLE;
361 if (existVarParams) {
362 oocoutP((TObject*)0,Minimization) << "ProfileLikelihoodCalcultor::GetHypoTest - do conditional fit " << std::endl;
363
364 RooFitResult * fit2 = DoMinimizeNLL(nll);
365
366 // print fit result
367 if (fit2) {
368 nLLatCondMLE = fit2->minNll();
370
371 if (fit2->status() != 0)
372 oocoutW((TObject*)0,Minimization) << "ProfileLikelihoodCalcultor::GetHypotest - Conditional fit failed - status = " << fit2->status() << std::endl;
373 }
374
375 }
376 else {
377 // get just the likelihood value (no need to do a fit since the likelihood is a constant function)
378 nLLatCondMLE = nll->getVal();
379 // this value contains the offset
380 if (RooStats::IsNLLOffset() ) nLLatCondMLE -= nlloffset;
381 }
382
383 // Use Wilks' theorem to translate -2 log lambda into a significance/p-value
384 Double_t deltaNLL = std::max( nLLatCondMLE-nLLatMLE, 0.);
385
386 // get number of free parameter of interest
388 int ndf = poiList.getSize();
389
390 Double_t pvalue = ROOT::Math::chisquared_cdf_c( 2* deltaNLL, ndf);
391
392 // in case of one dimension (1 poi) do the one-sided p-value (need to divide by 2)
393 if (ndf == 1) pvalue = 0.5 * pvalue;
394
395 TString name = TString("ProfileLRHypoTestResult_");// + TString(GetName() );
396 HypoTestResult* htr = new HypoTestResult(name, pvalue, 0 );
397
398 // restore previous value of poi
399 for (unsigned int i = 0; i < oldValues.size(); ++i) {
400 RooRealVar * mytarget = (RooRealVar*) constrainedParams->find(poiList[i].GetName());
401 if (mytarget) {
402 mytarget->setVal(oldValues[i] );
403 mytarget->setConstant(false);
404 }
405 }
406
407 delete constrainedParams;
408 delete nll;
409 return htr;
410
411}
#define oocoutW(o, a)
Definition: RooMsgService.h:46
#define oocoutI(o, a)
Definition: RooMsgService.h:44
#define oocoutP(o, a)
Definition: RooMsgService.h:45
double Double_t
Definition: RtypesCore.h:55
const Bool_t kTRUE
Definition: RtypesCore.h:87
#define ClassImp(name)
Definition: Rtypes.h:363
static const std::string & DefaultMinimizerType()
static const std::string & DefaultMinimizerAlgo()
RooAbsArg is the common abstract base class for objects that represent a value (of arbitrary type) an...
Definition: RooAbsArg.h:66
RooArgSet * getParameters(const RooAbsData *data, Bool_t stripDisconnected=kTRUE) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
Definition: RooAbsArg.cxx:533
Bool_t addOwnedComponents(const RooArgSet &comps)
Take ownership of the contents of 'comps'.
Definition: RooAbsArg.cxx:2274
Bool_t isConstant() const
Definition: RooAbsArg.h:266
Int_t getSize() const
virtual RooAbsArg * addClone(const RooAbsArg &var, Bool_t silent=kFALSE)
Add a clone of the specified argument to list.
const char * GetName() const
Returns name of object.
TIterator * createIterator(Bool_t dir=kIterForward) const
RooAbsArg * find(const char *name) const
Find object with given name in list.
RooAbsData is the common abstract base class for binned and unbinned datasets.
Definition: RooAbsData.h:37
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
Definition: RooAbsPdf.h:41
virtual RooAbsReal * createNLL(RooAbsData &data, const RooLinkedList &cmdList)
Construct representation of -log(L) of PDFwith given dataset.
Definition: RooAbsPdf.cxx:781
void setConstant(Bool_t value=kTRUE)
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
Definition: RooAbsReal.h:53
virtual RooAbsReal * createProfile(const RooArgSet &paramsOfInterest)
Create a RooProfileLL object that eliminates all nuisance parameters in the present function.
Definition: RooAbsReal.cxx:462
Double_t getVal(const RooArgSet *set=0) const
Evaluate object. Returns either cached value or triggers a recalculation.
Definition: RooAbsReal.h:64
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Definition: RooArgSet.h:28
virtual void addClone(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling addOwned() for each element in the source...
Definition: RooArgSet.h:96
RooFitResult is a container class to hold the input and output of a PDF fit to a dataset.
Definition: RooFitResult.h:40
virtual Int_t defaultPrintContents(Option_t *opt) const
Configure default contents to be printed.
virtual StyleOption defaultPrintStyle(Option_t *opt) const
Configure mapping of Print() arguments to RooPrintable print styles.
Double_t minNll() const
Definition: RooFitResult.h:98
const RooArgList & floatParsFinal() const
Definition: RooFitResult.h:110
Int_t status() const
Definition: RooFitResult.h:77
RooMinimizer is a wrapper class around ROOT::Fit:Fitter that provides a seamless interface between th...
Definition: RooMinimizer.h:38
RooFitResult * save(const char *name=0, const char *title=0)
Save and return a RooFitResult snaphot of current minimizer status.
Int_t minimize(const char *type, const char *alg=0)
void setEps(Double_t eps)
Change MINUIT epsilon.
Int_t setPrintLevel(Int_t newLevel)
Change the MINUIT internal printing level.
void optimizeConst(Int_t flag)
If flag is true, perform constant term optimization on function being minimized.
void setStrategy(Int_t strat)
Change MINUIT strategy to istrat.
virtual void printStream(std::ostream &os, Int_t contents, StyleOption style, TString indent="") const
Print description of object on ostream, printing contents set by contents integer,...
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
void setError(Double_t value)
Definition: RooRealVar.h:55
Double_t getError() const
Definition: RooRealVar.h:53
virtual void setVal(Double_t value)
Set value of variable to 'value'.
Definition: RooRealVar.cxx:204
CombinedCalculator is an interface class for a tools which can produce both RooStats HypoTestResults ...
HypoTestResult is a base class for results from hypothesis tests.
LikelihoodInterval is a concrete implementation of the RooStats::ConfInterval interface.
virtual void SetConfidenceLevel(Double_t cl)
set the confidence level for the interval (e.g 0.682 for a 1-sigma interval)
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
Definition: ModelConfig.h:30
ProfileLikelihoodCalculator is a concrete implementation of CombinedCalculator (the interface class f...
virtual HypoTestResult * GetHypoTest() const
Return the hypothesis test result obtained from the likelihood ratio of the maximum likelihood value ...
static RooFitResult * DoMinimizeNLL(RooAbsReal *nll)
virtual LikelihoodInterval * GetInterval() const
Return a likelihood interval.
ProfileLikelihoodCalculator()
Default constructor (needed for I/O)
virtual ~ProfileLikelihoodCalculator()
destructor cannot delete prod pdf because it will delete all the composing pdf's if (fOwnPdf) delete ...
TObject * Next()
Definition: TCollection.h:249
virtual const char * GetName() const
Returns name of object.
Definition: TNamed.h:47
Mother of all ROOT objects.
Definition: TObject.h:37
double chisquared_cdf_c(double x, double r, double x0=0)
Complement of the cumulative distribution function of the distribution with degrees of freedom (upp...
RooCmdArg Constrain(const RooArgSet &params)
RooCmdArg GlobalObservables(const RooArgSet &globs)
@ Minimization
Definition: RooGlobalFunc.h:57
RooCmdArg CloneData(Bool_t flag)
RooCmdArg ConditionalObservables(const RooArgSet &set)
RooCmdArg Offset(Bool_t flag=kTRUE)
@(#)root/roostats:$Id$ Author: George Lewis, Kyle Cranmer
Definition: Asimov.h:20
void RemoveConstantParameters(RooArgSet *set)
Definition: RooStatsUtils.h:62
bool IsNLLOffset()
STL namespace.