Logo ROOT   6.16/01
Reference Guide
ModularFunctionMinimizer.cxx
Go to the documentation of this file.
1// @(#)root/minuit2:$Id$
2// Authors: M. Winkler, F. James, L. Moneta, A. Zsenei 2003-2005
3
4/**********************************************************************
5 * *
6 * Copyright (c) 2005 LCG ROOT Math team, CERN/PH-SFT *
7 * *
8 **********************************************************************/
9
15#include "Minuit2/MinimumSeed.h"
21#include "Minuit2/MnUserFcn.h"
22#include "Minuit2/FCNBase.h"
24#include "Minuit2/MnStrategy.h"
25#include "Minuit2/MnHesse.h"
28
29#if defined(DEBUG) || defined(WARNINGMSG)
30#include "Minuit2/MnPrint.h"
31#endif
32
33
34namespace ROOT {
35
36 namespace Minuit2 {
37
38
39// #include "Minuit2/MnUserParametersPrint.h"
40
41FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNBase& fcn, const std::vector<double>& par, const std::vector<double>& err, unsigned int stra, unsigned int maxfcn, double toler) const {
42 // minimize from FCNBase and std::vector of double's for parameter values and errors (step sizes)
43 MnUserParameterState st(par, err);
44 MnStrategy strategy(stra);
45 return Minimize(fcn, st, strategy, maxfcn, toler);
46}
47
48FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNGradientBase& fcn, const std::vector<double>& par, const std::vector<double>& err, unsigned int stra, unsigned int maxfcn, double toler) const {
49 // minimize from FCNGradientBase (use analytical gradient provided in FCN)
50 // and std::vector of double's for parameter values and errors (step sizes)
51 MnUserParameterState st(par, err);
52 MnStrategy strategy(stra);
53 return Minimize(fcn, st, strategy, maxfcn, toler);
54}
55
56// move nrow before cov to avoid ambiguities when using default parameters
57FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNBase& fcn, const std::vector<double>& par, unsigned int nrow, const std::vector<double>& cov, unsigned int stra, unsigned int maxfcn, double toler) const {
58 // minimize from FCNBase using std::vector for parameter error and
59 // an std::vector of size n*(n+1)/2 for the covariance matrix and n (rank of cov matrix)
60
61 MnUserParameterState st(par, cov, nrow);
62 MnStrategy strategy(stra);
63 return Minimize(fcn, st, strategy, maxfcn, toler);
64}
65
66FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNGradientBase& fcn, const std::vector<double>& par, unsigned int nrow, const std::vector<double>& cov, unsigned int stra, unsigned int maxfcn, double toler) const {
67 // minimize from FCNGradientBase (use analytical gradient provided in FCN)
68 // using std::vector for parameter error and
69 // an std::vector of size n*(n+1)/2 for the covariance matrix and n (rank of cov matrix)
70
71 MnUserParameterState st(par, cov, nrow);
72 MnStrategy strategy(stra);
73 return Minimize(fcn, st, strategy, maxfcn, toler);
74}
75
76FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNBase& fcn, const MnUserParameters& upar, const MnStrategy& strategy, unsigned int maxfcn, double toler) const {
77 // minimize from FCNBase and MnUserParameters object
78
79 MnUserParameterState st(upar);
80 return Minimize(fcn, st, strategy, maxfcn, toler);
81}
82
83FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNGradientBase& fcn, const MnUserParameters& upar, const MnStrategy& strategy, unsigned int maxfcn, double toler) const {
84 // minimize from FCNGradientBase (use analytical gradient provided in FCN) and MnUserParameters object
85
86 MnUserParameterState st(upar);
87 return Minimize(fcn, st, strategy, maxfcn, toler);
88}
89
90FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNBase& fcn, const MnUserParameters& upar, const MnUserCovariance& cov, const MnStrategy& strategy, unsigned int maxfcn, double toler) const {
91 // minimize from FCNBase and MnUserParameters and MnUserCovariance objects
92
93 MnUserParameterState st(upar, cov);
94 return Minimize(fcn, st, strategy, maxfcn, toler);
95}
96
97FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNGradientBase& fcn, const MnUserParameters& upar, const MnUserCovariance& cov, const MnStrategy& strategy, unsigned int maxfcn, double toler) const {
98 // minimize from FCNGradientBase (use analytical gradient provided in FCN) and
99 // MnUserParameters MnUserCovariance objects
100
101 MnUserParameterState st(upar, cov);
102 return Minimize(fcn, st, strategy, maxfcn, toler);
103}
104
105
106
107FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNBase& fcn, const MnUserParameterState& st, const MnStrategy& strategy, unsigned int maxfcn, double toler) const {
108 // minimize from a FCNBase and a MnUserparameterState - interface used by all the previous ones
109 // based on FCNBase. Create in this case a NumericalGradient calculator
110 // Create the minuit FCN wrapper (MnUserFcn) containing the trasformation (int<->ext)
111
112 // neeed MnUsserFcn for difference int-ext parameters
113 MnUserFcn mfcn(fcn, st.Trafo() );
114 Numerical2PGradientCalculator gc(mfcn, st.Trafo(), strategy);
115
116 unsigned int npar = st.VariableParameters();
117 if(maxfcn == 0) maxfcn = 200 + 100*npar + 5*npar*npar;
118 MinimumSeed mnseeds = SeedGenerator()(mfcn, gc, st, strategy);
119
120 return Minimize(mfcn, gc, mnseeds, strategy, maxfcn, toler);
121}
122
123
124// use Gradient here
125FunctionMinimum ModularFunctionMinimizer::Minimize(const FCNGradientBase& fcn, const MnUserParameterState& st, const MnStrategy& strategy, unsigned int maxfcn, double toler) const {
126 // minimize from a FCNGradientBase and a MnUserparameterState - interface used by all the previous ones
127 // based on FCNGradientBase.
128 // Create in this acase an AnalyticalGradient calculator
129 // Create the minuit FCN wrapper (MnUserFcn) containing the trasformation (int<->ext)
130
131 MnUserFcn mfcn(fcn, st.Trafo());
133
134 unsigned int npar = st.VariableParameters();
135 if(maxfcn == 0) maxfcn = 200 + 100*npar + 5*npar*npar;
136
137 MinimumSeed mnseeds = SeedGenerator()(mfcn, gc, st, strategy);
138
139 return Minimize(mfcn, gc, mnseeds, strategy, maxfcn, toler);
140}
141
142
143FunctionMinimum ModularFunctionMinimizer::Minimize(const MnFcn& mfcn, const GradientCalculator& gc, const MinimumSeed& seed, const MnStrategy& strategy, unsigned int maxfcn, double toler) const {
144 // Interface used by all the others for the minimization using the base MinimumBuilder class
145 // According to the contained type of MinimumBuilder the right type will be used
146
147 const MinimumBuilder & mb = Builder();
148 //std::cout << typeid(&mb).Name() << std::endl;
149 double effective_toler = toler * mfcn.Up(); // scale tolerance with Up()
150 // avoid tolerance too smalls (than limits)
151 double eps = MnMachinePrecision().Eps2();
152 if (effective_toler < eps) effective_toler = eps;
153
154 // check if maxfcn is already exhausted
155 // case already reached call limit
156 if(mfcn.NumOfCalls() >= maxfcn) {
157#ifdef WARNINGMSG
158 MN_INFO_MSG("ModularFunctionMinimizer: Stop before iterating - call limit already exceeded");
159#endif
160 return FunctionMinimum(seed, std::vector<MinimumState>(1, seed.State()), mfcn.Up(), FunctionMinimum::MnReachedCallLimit());
161 }
162
163
164
165
166 return mb.Minimum(mfcn, gc, seed, strategy, maxfcn, effective_toler);
167}
168
169
170
171
172 } // namespace Minuit2
173
174} // namespace ROOT
#define MN_INFO_MSG(str)
Definition: MnPrint.h:110
Interface (abstract class) defining the function to be minimized, which has to be implemented by the ...
Definition: FCNBase.h:47
Extension of the FCNBase for providing the analytical Gradient of the function.
class holding the full result of the minimization; both internal and external (MnUserParameterState) ...
interface class for gradient calculators
virtual FunctionMinimum Minimum(const MnFcn &, const GradientCalculator &, const MinimumSeed &, const MnStrategy &, unsigned int, double) const =0
MinimumSeed contains the starting values for the minimization produced by the SeedGenerator.
Definition: MinimumSeed.h:31
const MinimumState & State() const
Definition: MinimumSeed.h:46
Wrapper class to FCNBase interface used internally by Minuit.
Definition: MnFcn.h:33
double Up() const
Definition: MnFcn.cxx:35
unsigned int NumOfCalls() const
Definition: MnFcn.h:43
determines the relative floating point arithmetic precision.
double Eps2() const
eps2 returns 2*sqrt(eps)
API class for defining three levels of strategies: low (0), medium (1), high (>=2); acts on: Migrad (...
Definition: MnStrategy.h:27
Class containing the covariance matrix data represented as a vector of size n*(n+1)/2 Used to hide in...
Wrapper used by Minuit of FCN interface containing a reference to the transformation object.
Definition: MnUserFcn.h:26
class which holds the external user and/or internal Minuit representation of the parameters and error...
const MnUserTransformation & Trafo() const
API class for the user interaction with the parameters; serves as input to the minimizer as well as o...
virtual const MinimumBuilder & Builder() const =0
virtual FunctionMinimum Minimize(const FCNBase &, const std::vector< double > &, const std::vector< double > &, unsigned int stra=1, unsigned int maxfcn=0, double toler=0.1) const
virtual const MinimumSeedGenerator & SeedGenerator() const =0
class performing the numerical gradient calculation
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21