14#ifndef ROOT_TMVA_RMethodRSNNS
15#define ROOT_TMVA_RMethodRSNNS
#define ClassDef(name, id)
This is a class to pass functions from ROOT to R.
This is a class to get ROOT's objects from R's objects.
Class that contains all the data information.
Class that contains all the data information.
This is the main MVA steering class.
virtual void ReadWeightsFromStream(std::istream &)=0
static Bool_t IsModuleLoaded
virtual void ReadWeightsFromStream(std::istream &)
virtual void AddWeightsXMLTo(void *) const
std::vector< Float_t > fProbResultForTrainSig
ROOT::R::TRFunctionImport asfactor
void GetHelpMessage() const
Double_t GetMvaValue(Double_t *errLower=0, Double_t *errUpper=0)
DataSetManager * fDataSetManager
const Ranking * CreateRanking()
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
ROOT::R::TRFunctionImport predict
virtual std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
TString fUpdateFuncParams
virtual void TestClassification()
initialization
MethodRSNNS(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
virtual void ReadWeightsFromXML(void *)
std::vector< UInt_t > fFactorNumeric
ROOT::R::TRFunctionImport mlp
ROOT::R::TRObject * fModel
std::vector< Float_t > fProbResultForTestSig
Ranking for variables in method (implementation)
The Reader class serves to use the MVAs in a specific analysis context.
Abstract ClassifierFactory template that handles arbitrary types.