76 fAdaptiveSampling(false),
77 fAdditionalNToysFactor(1.),
80 fDoProfileConstruction(true),
81 fSaveBeltToFile(false),
157 ooccoutP(&
fModel,
Generation) <<
"FeldmanCousins: Model has nuisance parameters, will do profile construction" << endl;
183 "profileConstruction",
189 *parameters = *parameterScan->
get(i);
191 profileConstructionPoints->
add(*parameters);
Bool_t equals(const RooAbsCollection &otherColl) const
Check if this and other collection have identically named contents.
TIterator * createIterator(Bool_t dir=kIterForward) const
RooAbsData is the common abstract base class for binned and unbinned datasets.
virtual const RooArgSet * get() const
virtual Int_t numEntries() const
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
virtual RooAbsReal * createNLL(RooAbsData &data, const RooLinkedList &cmdList)
Construct representation of -log(L) of PDFwith given dataset.
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
virtual RooAbsReal * createProfile(const RooArgSet ¶msOfInterest)
Create a RooProfileLL object that eliminates all nuisance parameters in the present function.
Double_t getVal(const RooArgSet *set=0) const
Evaluate object. Returns either cached value or triggers a recalculation.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
virtual Bool_t add(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling add() for each element in the source coll...
RooDataSet is a container class to hold N-dimensional binned data.
virtual Int_t numEntries() const
Return the number of bins.
RooDataSet is a container class to hold unbinned data.
virtual void add(const RooArgSet &row, Double_t weight=1.0, Double_t weightError=0)
Add a data point, with its coordinates specified in the 'data' argset, to the data set.
static RooMsgService & instance()
Return reference to singleton instance.
void setGlobalKillBelow(RooFit::MsgLevel level)
RooFit::MsgLevel globalKillBelow() const
RooRealVar represents a fundamental (non-derived) real valued object.
void setBins(Int_t nBins, const char *name=0)
The FeldmanCousins class (like the Feldman-Cousins technique) is essentially a specific configuration...
ConfidenceBelt * fConfBelt
virtual PointSetInterval * GetInterval() const
Main interface to get a ConfInterval (will be a PointSetInterval)
void CreateParameterPoints() const
initializes fPointsToTest data member (mutable)
TestStatSampler * GetTestStatSampler() const
Returns instance of TestStatSampler.
Double_t fAdditionalNToysFactor
void CreateTestStatSampler() const
initializes fTestStatSampler data member (mutable)
Bool_t fDoProfileConstruction
RooAbsData * fPointsToTest
virtual ~FeldmanCousins()
destructor
ToyMCSampler * fTestStatSampler
virtual void SetModel(const ModelConfig &)
set the model
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return NULL if not existing)
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return NULL if not existing)
const RooArgSet * GetObservables() const
get RooArgSet for observables (return NULL if not existing)
void GuessObsAndNuisance(const RooAbsData &data)
guesses Observables and ParametersOfInterest if not already set
RooAbsPdf * GetPdf() const
get model PDF (return NULL if pdf has not been specified or does not exist)
NeymanConstruction is a concrete implementation of the NeymanConstruction interface that,...
virtual void SetTestSize(Double_t size)
set the size of the test (rate of Type I error) ( Eg. 0.05 for a 95% Confidence Interval)
void SaveBeltToFile(bool flag=true)
save the confidence belt to a file
ConfidenceBelt * GetConfidenceBelt()
get confidence belt
virtual PointSetInterval * GetInterval() const
Main interface to get a ConfInterval (will be a PointSetInterval)
void SetTestStatSampler(TestStatSampler &sampler)
in addition to interface we also need: Set the TestStatSampler (eg.
void SetLeftSideTailFraction(Double_t leftSideFraction=0.)
fLeftSideTailFraction*fSize defines lower edge of acceptance region.
void UseAdaptiveSampling(bool flag=true)
adaptive sampling algorithm to speed up interval calculation
void AdditionalNToysFactor(double fact)
give user ability to ask for more toys
void CreateConfBelt(bool flag=true)
should create confidence belt
void SetParameterPointsToTest(RooAbsData &pointsToTest)
User-defined set of points to test.
virtual void SetData(RooAbsData &data)
Set the DataSet.
PointSetInterval is a concrete implementation of the ConfInterval interface.
ProfileLikelihoodTestStat is an implementation of the TestStatistic interface that calculates the pro...
TestStatSampler is an interface class for a tools which produce RooStats SamplingDistributions.
ToyMCSampler is an implementation of the TestStatSampler interface.
virtual void SetObservables(const RooArgSet &o)
virtual void SetPdf(RooAbsPdf &pdf)
virtual void SetNEventsPerToy(const Int_t nevents)
virtual void SetParametersForTestStat(const RooArgSet &nullpoi)
RooCmdArg CloneData(Bool_t flag)
@(#)root/roostats:$Id$ Author: George Lewis, Kyle Cranmer