44 static const double eu = 0.577215664901532860606;
58 if (x>-0.223172) x = -0.223172;
63 double p0 =
Pdf (x - eps);
65 double p2 =
Pdf (x + eps);
66 double y1 = 0.5*(p2-p0)/eps;
67 double y2 = (p2-2*p1+p0)/(eps*eps);
70 if (
fabs(dx) < eps) eps = 0.1*
fabs(dx);
71 }
while (
fabs(dx) > 1
E-5);
93 return (1-0.5*beta2)/kappa;
101 return (0.5-beta2/3)/(kappa*kappa) *
std::pow ((1-0.5*beta2)/kappa, -1.5);
110 return (1./3-0.25*beta2)*
pow (1-0.5*beta2, -2)/kappa;
Namespace for new ROOT classes and functions.
virtual double Variance() const
Return the theoretical variance .
virtual double Pdf(double x) const =0
Evaluate the Vavilov probability density function.
Vavilov()
Default constructor.
static double p2(double t, double a, double b, double c)
double pow(double, double)
virtual double Kurtosis() const
Return the theoretical kurtosis .
virtual ~Vavilov()
Destructor.
virtual double Skewness() const
Return the theoretical skewness .
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
virtual double Mode() const
Return the value of where the pdf is maximal.
virtual double GetBeta2() const =0
Return the current value of .
static double p1(double t, double a, double b)
constexpr Double_t E()
Base of natural log: .
Namespace for new Math classes and functions.
virtual void SetKappaBeta2(double kappa, double beta2)=0
Change and and recalculate coefficients if necessary.
virtual double GetKappa() const =0
Return the current value of .
virtual double Mean() const
Return the theoretical mean , where is Euler's constant.