ROOT
6.14/05
Reference Guide
math
quadp
inc
TQpProbBase.h
Go to the documentation of this file.
1
// @(#)root/quadp:$Id$
2
// Author: Eddy Offermann May 2004
3
4
/*************************************************************************
5
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
6
* All rights reserved. *
7
* *
8
* For the licensing terms see $ROOTSYS/LICENSE. *
9
* For the list of contributors see $ROOTSYS/README/CREDITS. *
10
*************************************************************************/
11
12
/*************************************************************************
13
* Parts of this file are copied from the OOQP distribution and *
14
* are subject to the following license: *
15
* *
16
* COPYRIGHT 2001 UNIVERSITY OF CHICAGO *
17
* *
18
* The copyright holder hereby grants you royalty-free rights to use, *
19
* reproduce, prepare derivative works, and to redistribute this software*
20
* to others, provided that any changes are clearly documented. This *
21
* software was authored by: *
22
* *
23
* E. MICHAEL GERTZ gertz@mcs.anl.gov *
24
* Mathematics and Computer Science Division *
25
* Argonne National Laboratory *
26
* 9700 S. Cass Avenue *
27
* Argonne, IL 60439-4844 *
28
* *
29
* STEPHEN J. WRIGHT swright@cs.wisc.edu *
30
* Computer Sciences Department *
31
* University of Wisconsin *
32
* 1210 West Dayton Street *
33
* Madison, WI 53706 FAX: (608)262-9777 *
34
* *
35
* Any questions or comments may be directed to one of the authors. *
36
* *
37
* ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF *
38
* ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND *
39
* OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT *
40
* WITH THE DEPARTMENT OF ENERGY. *
41
*************************************************************************/
42
43
#ifndef ROOT_TQpProbBase
44
#define ROOT_TQpProbBase
45
46
#include "
TError.h
"
47
48
#include "
TQpVar.h
"
49
#include "
TQpDataBase.h
"
50
#include "
TQpResidual.h
"
51
52
#include "
TMatrixD.h
"
53
54
///////////////////////////////////////////////////////////////////////////
55
// //
56
// default general problem formulation: //
57
// //
58
// minimize c' x + ( 1/2 ) x' * Q x ; //
59
// subject to A x = b ; //
60
// clo <= C x <= cup ; //
61
// xlo <= x <= xup ; //
62
// //
63
// The general linear equality constraints must have either an upper //
64
// or lower bound, but need not have both bounds. The variables may have//
65
// no bounds; an upper bound; a lower bound or both an upper and lower //
66
// bound. //
67
// //
68
// However, for many (possibly most) QP's, the matrices in the //
69
// formulation have structure that may be exploited to solve the //
70
// problem more efficiently. This abstract problem formulation contains //
71
// a setup such that one can derive and add special formulations . //
72
// The optimality conditions of the simple QP defined above are //
73
// follows: //
74
// //
75
// rQ = c + Q * x - A' * y - C' * z = 0 //
76
// rA = A * x - b = 0 //
77
// rC = C * x - s - d = 0 //
78
// r3 = S * z = 0 //
79
// s, z >= 0 //
80
// //
81
// Where rQ, rA, rC and r3 newly defined quantities known as residual //
82
// vectors and x, y, z and s are variables of used in solution of the //
83
// QPs. //
84
// //
85
///////////////////////////////////////////////////////////////////////////
86
87
class
TQpLinSolverBase
;
88
class
TQpProbBase
:
public
TObject
89
{
90
91
public
:
92
Int_t
fNx
;
// number of elements in x
93
Int_t
fMy
;
// number of rows in A and b
94
Int_t
fMz
;
// number of rows in C
95
96
TQpProbBase
();
97
TQpProbBase
(
Int_t
nx,
Int_t
my,
Int_t
mz);
98
TQpProbBase
(
const
TQpProbBase
&another);
99
100
virtual
~TQpProbBase
() {}
101
102
virtual
TQpDataBase
*
MakeData
(
TVectorD
&
c
,
103
TMatrixDBase
&Q_in,
104
TVectorD
&xlo,
TVectorD
&ixlo,
105
TVectorD
&xup,
TVectorD
&ixup,
106
TMatrixDBase
&A_in,
TVectorD
&bA,
107
TMatrixDBase
&C_in,
108
TVectorD
&clo,
TVectorD
&iclo,
109
TVectorD
&cup,
TVectorD
&icup) = 0;
110
virtual
TQpResidual
*
MakeResiduals
(
const
TQpDataBase
*
data
) = 0;
111
virtual
TQpVar
*
MakeVariables
(
const
TQpDataBase
*data) = 0;
112
virtual
TQpLinSolverBase
*
MakeLinSys
(
const
TQpDataBase
*data) = 0;
113
114
virtual
void
JoinRHS
(
TVectorD
&rhs_in,
TVectorD
&rhs1_in,
TVectorD
&rhs2_in,
TVectorD
&rhs3_in) = 0;
115
virtual
void
SeparateVars
(
TVectorD
&x_in,
TVectorD
&y_in,
TVectorD
&z_in,
TVectorD
&vars_in) = 0;
116
117
TQpProbBase
&
operator=
(
const
TQpProbBase
&source);
118
119
ClassDef
(
TQpProbBase
,1)
// Qp problem formulation base class
120
};
121
#endif
TQpDataBase
Definition:
TQpDataBase.h:60
TQpProbBase
Definition:
TQpProbBase.h:88
TQpProbBase::MakeVariables
virtual TQpVar * MakeVariables(const TQpDataBase *data)=0
TQpResidual
Definition:
TQpResidual.h:61
TVectorT< Double_t >
ApplicationClassificationKeras.data
data
Definition:
ApplicationClassificationKeras.py:17
TQpProbBase::~TQpProbBase
virtual ~TQpProbBase()
Definition:
TQpProbBase.h:100
TQpDataBase.h
Int_t
int Int_t
Definition:
RtypesCore.h:41
TQpProbBase::MakeResiduals
virtual TQpResidual * MakeResiduals(const TQpDataBase *data)=0
ClassDef
#define ClassDef(name, id)
Definition:
Rtypes.h:320
TQpProbBase::fNx
Int_t fNx
Definition:
TQpProbBase.h:92
TQpProbBase::fMz
Int_t fMz
Definition:
TQpProbBase.h:94
TQpVar.h
TQpProbBase::SeparateVars
virtual void SeparateVars(TVectorD &x_in, TVectorD &y_in, TVectorD &z_in, TVectorD &vars_in)=0
TQpLinSolverBase
Definition:
TQpLinSolverBase.h:66
TError.h
TQpProbBase::MakeLinSys
virtual TQpLinSolverBase * MakeLinSys(const TQpDataBase *data)=0
TMatrixTBase
Linear Algebra Package.
Definition:
TMatrixDBasefwd.h:25
TQpProbBase::JoinRHS
virtual void JoinRHS(TVectorD &rhs_in, TVectorD &rhs1_in, TVectorD &rhs2_in, TVectorD &rhs3_in)=0
TQpProbBase::fMy
Int_t fMy
Definition:
TQpProbBase.h:93
TQpProbBase::TQpProbBase
TQpProbBase()
Default constructor.
Definition:
TQpProbBase.cxx:63
TObject
Mother of all ROOT objects.
Definition:
TObject.h:37
TMatrixD.h
TQpVar
Definition:
TQpVar.h:59
TQpProbBase::MakeData
virtual TQpDataBase * MakeData(TVectorD &c, TMatrixDBase &Q_in, TVectorD &xlo, TVectorD &ixlo, TVectorD &xup, TVectorD &ixup, TMatrixDBase &A_in, TVectorD &bA, TMatrixDBase &C_in, TVectorD &clo, TVectorD &iclo, TVectorD &cup, TVectorD &icup)=0
c
#define c(i)
Definition:
RSha256.hxx:101
TQpResidual.h
TQpProbBase::operator=
TQpProbBase & operator=(const TQpProbBase &source)
Assignment operator.
Definition:
TQpProbBase.cxx:94