57 MsgLogger fLogger(
"HyperParameterOptimisation");
60 fLogger<<kHEADER<<
"===========================================================" <<
Endl;
61 fLogger<<kINFO<<
"Optimisation for " <<
fMethodName <<
" fold " << j+1 <<
Endl;
64 fLogger<<kINFO<< it.first <<
" " << it.second <<
Endl;
74 fFomType(
"Separation"),
78 fClassifier(new
TMVA::
Factory(
"HyperParameterOptimisation",
"!V:!ROC:Silent:!ModelPersistence:!Color:!DrawProgressBar:AnalysisType=Classification"))
113 TString foldTitle = methodTitle;
HyperParameterOptimisationResult()
MsgLogger & Endl(MsgLogger &ml)
A TMultiGraph is a collection of TGraph (or derived) objects.
HyperParameterOptimisationResult fResults
static void SetIsTraining(Bool_t)
when this static function is called, it sets the flag whether events with negative event weight shoul...
Abstract base class for all high level ml algorithms, you can book ml methods like BDT...
virtual void Evaluate()
Virtual method to be implemented with your algorithm.
void SetNumFolds(UInt_t folds)
std::shared_ptr< TMultiGraph > fROCCurves
HyperParameterOptimisation(DataLoader *dataloader)
~HyperParameterOptimisation()
This is the main MVA steering class.
std::shared_ptr< DataLoader > fDataLoader
Booked method information.
ostringstream derivative to redirect and format output
std::vector< std::map< TString, Double_t > > fFoldParameters
Abstract ClassifierFactory template that handles arbitrary types.
TMultiGraph * GetROCCurves(Bool_t fLegend=kTRUE)
~HyperParameterOptimisationResult()
static void EnableOutput()
std::unique_ptr< Factory > fClassifier
std::vector< OptionMap > fMethods