Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.12/07
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
langaus.C File Reference

Detailed Description

View in nbviewer Open in SWAN Convoluted Landau and Gaussian Fitting Function (using ROOT's Landau and Gauss functions)

Based on a Fortran code by R.Fruehwirth (fruhw.nosp@m.irth.nosp@m.@heph.nosp@m.y.oe.nosp@m.aw.ac.nosp@m..at)

to execute this example, do:

root > .x langaus.C

or

root > .x langaus.C++
pict1_langaus.C.png
Processing /mnt/build/workspace/root-makedoc-v612/rootspi/rdoc/src/v6-12-00-patches/tutorials/fit/langaus.C...
Fitting...
FCN=5.25252 FROM MIGRAD STATUS=CONVERGED 193 CALLS 194 TOTAL
EDM=3.227e-09 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 Width 1.25740e+00 3.04846e-01 1.37307e-04 1.57021e-04
2 MP 2.08890e+01 1.28244e+00 3.40886e-05 8.22843e-04
3 Area 1.15515e+04 2.42312e+03 1.66644e-05 -1.66635e-03
4 GSigma 4.06350e+00 7.58845e-01 2.30703e-04 -2.48397e-04
Fitting done
Plotting results...
#include "TH1.h"
#include "TF1.h"
#include "TROOT.h"
#include "TStyle.h"
#include "TMath.h"
Double_t langaufun(Double_t *x, Double_t *par) {
//Fit parameters:
//par[0]=Width (scale) parameter of Landau density
//par[1]=Most Probable (MP, location) parameter of Landau density
//par[2]=Total area (integral -inf to inf, normalization constant)
//par[3]=Width (sigma) of convoluted Gaussian function
//
//In the Landau distribution (represented by the CERNLIB approximation),
//the maximum is located at x=-0.22278298 with the location parameter=0.
//This shift is corrected within this function, so that the actual
//maximum is identical to the MP parameter.
// Numeric constants
Double_t invsq2pi = 0.3989422804014; // (2 pi)^(-1/2)
Double_t mpshift = -0.22278298; // Landau maximum location
// Control constants
Double_t np = 100.0; // number of convolution steps
Double_t sc = 5.0; // convolution extends to +-sc Gaussian sigmas
// Variables
Double_t mpc;
Double_t fland;
Double_t sum = 0.0;
Double_t xlow,xupp;
Double_t step;
// MP shift correction
mpc = par[1] - mpshift * par[0];
// Range of convolution integral
xlow = x[0] - sc * par[3];
xupp = x[0] + sc * par[3];
step = (xupp-xlow) / np;
// Convolution integral of Landau and Gaussian by sum
for(i=1.0; i<=np/2; i++) {
xx = xlow + (i-.5) * step;
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
sum += fland * TMath::Gaus(x[0],xx,par[3]);
xx = xupp - (i-.5) * step;
fland = TMath::Landau(xx,mpc,par[0]) / par[0];
sum += fland * TMath::Gaus(x[0],xx,par[3]);
}
return (par[2] * step * sum * invsq2pi / par[3]);
}
TF1 *langaufit(TH1F *his, Double_t *fitrange, Double_t *startvalues, Double_t *parlimitslo, Double_t *parlimitshi, Double_t *fitparams, Double_t *fiterrors, Double_t *ChiSqr, Int_t *NDF)
{
// Once again, here are the Landau * Gaussian parameters:
// par[0]=Width (scale) parameter of Landau density
// par[1]=Most Probable (MP, location) parameter of Landau density
// par[2]=Total area (integral -inf to inf, normalization constant)
// par[3]=Width (sigma) of convoluted Gaussian function
//
// Variables for langaufit call:
// his histogram to fit
// fitrange[2] lo and hi boundaries of fit range
// startvalues[4] reasonable start values for the fit
// parlimitslo[4] lower parameter limits
// parlimitshi[4] upper parameter limits
// fitparams[4] returns the final fit parameters
// fiterrors[4] returns the final fit errors
// ChiSqr returns the chi square
// NDF returns ndf
Int_t i;
Char_t FunName[100];
sprintf(FunName,"Fitfcn_%s",his->GetName());
TF1 *ffitold = (TF1*)gROOT->GetListOfFunctions()->FindObject(FunName);
if (ffitold) delete ffitold;
TF1 *ffit = new TF1(FunName,langaufun,fitrange[0],fitrange[1],4);
ffit->SetParameters(startvalues);
ffit->SetParNames("Width","MP","Area","GSigma");
for (i=0; i<4; i++) {
ffit->SetParLimits(i, parlimitslo[i], parlimitshi[i]);
}
his->Fit(FunName,"RB0"); // fit within specified range, use ParLimits, do not plot
ffit->GetParameters(fitparams); // obtain fit parameters
for (i=0; i<4; i++) {
fiterrors[i] = ffit->GetParError(i); // obtain fit parameter errors
}
ChiSqr[0] = ffit->GetChisquare(); // obtain chi^2
NDF[0] = ffit->GetNDF(); // obtain ndf
return (ffit); // return fit function
}
Int_t langaupro(Double_t *params, Double_t &maxx, Double_t &FWHM) {
// Seaches for the location (x value) at the maximum of the
// Landau-Gaussian convolute and its full width at half-maximum.
//
// The search is probably not very efficient, but it's a first try.
Double_t p,x,fy,fxr,fxl;
Double_t step;
Double_t l,lold;
Int_t i = 0;
Int_t MAXCALLS = 10000;
// Search for maximum
p = params[1] - 0.1 * params[0];
step = 0.05 * params[0];
lold = -2.0;
l = -1.0;
while ( (l != lold) && (i < MAXCALLS) ) {
i++;
lold = l;
x = p + step;
l = langaufun(&x,params);
if (l < lold)
step = -step/10;
p += step;
}
if (i == MAXCALLS)
return (-1);
maxx = x;
fy = l/2;
// Search for right x location of fy
p = maxx + params[0];
step = params[0];
lold = -2.0;
l = -1e300;
i = 0;
while ( (l != lold) && (i < MAXCALLS) ) {
i++;
lold = l;
x = p + step;
l = TMath::Abs(langaufun(&x,params) - fy);
if (l > lold)
step = -step/10;
p += step;
}
if (i == MAXCALLS)
return (-2);
fxr = x;
// Search for left x location of fy
p = maxx - 0.5 * params[0];
step = -params[0];
lold = -2.0;
l = -1e300;
i = 0;
while ( (l != lold) && (i < MAXCALLS) ) {
i++;
lold = l;
x = p + step;
l = TMath::Abs(langaufun(&x,params) - fy);
if (l > lold)
step = -step/10;
p += step;
}
if (i == MAXCALLS)
return (-3);
fxl = x;
FWHM = fxr - fxl;
return (0);
}
void langaus() {
// Fill Histogram
Int_t data[100] = {0,0,0,0,0,0,2,6,11,18,18,55,90,141,255,323,454,563,681,
737,821,796,832,720,637,558,519,460,357,291,279,241,212,
153,164,139,106,95,91,76,80,80,59,58,51,30,49,23,35,28,23,
22,27,27,24,20,16,17,14,20,12,12,13,10,17,7,6,12,6,12,4,
9,9,10,3,4,5,2,4,1,5,5,1,7,1,6,3,3,3,4,5,4,4,2,2,7,2,4};
TH1F *hSNR = new TH1F("snr","Signal-to-noise",400,0,400);
for (Int_t i=0; i<100; i++) hSNR->Fill(i,data[i]);
// Fitting SNR histo
printf("Fitting...\n");
// Setting fit range and start values
Double_t fr[2];
Double_t sv[4], pllo[4], plhi[4], fp[4], fpe[4];
fr[0]=0.3*hSNR->GetMean();
fr[1]=3.0*hSNR->GetMean();
pllo[0]=0.5; pllo[1]=5.0; pllo[2]=1.0; pllo[3]=0.4;
plhi[0]=5.0; plhi[1]=50.0; plhi[2]=1000000.0; plhi[3]=5.0;
sv[0]=1.8; sv[1]=20.0; sv[2]=50000.0; sv[3]=3.0;
Double_t chisqr;
Int_t ndf;
TF1 *fitsnr = langaufit(hSNR,fr,sv,pllo,plhi,fp,fpe,&chisqr,&ndf);
Double_t SNRPeak, SNRFWHM;
langaupro(fp,SNRPeak,SNRFWHM);
printf("Fitting done\nPlotting results...\n");
// Global style settings
gStyle->SetLabelSize(0.03,"x");
gStyle->SetLabelSize(0.03,"y");
hSNR->GetXaxis()->SetRange(0,70);
hSNR->Draw();
fitsnr->Draw("lsame");
}
Authors
H.Pernegger, Markus Friedl

Definition in file langaus.C.