As input data is used a toy-MC sample consisting of four Gaussian-distributed and linearly correlated input variables. The methods to be used can be switched on and off by means of booleans, or via the prompt command, for example:
(note that the backslashes are mandatory) If no method given, a default set of classifiers is used. The output file "TMVA.root" can be analysed with the use of dedicated macros (simply say: root -l <macro.C>), which can be conveniently invoked through a GUI that will appear at the end of the run of this macro. Launch the GUI via the command:
0.097482919693
309.583484888
Processing /mnt/build/workspace/root-makedoc-v612/rootspi/rdoc/src/v6-12-00-patches/tutorials/tmva/TMVAClassification.C...
==> Start TMVAClassification
--- TMVAClassification : Using input file: ./files/tmva_class_example.root
DataSetInfo : [dataset] : Added class "Signal"
: Add Tree TreeS of type Signal with 6000 events
DataSetInfo : [dataset] : Added class "Background"
: Add Tree TreeB of type Background with 6000 events
Factory : Booking method: [1mCuts[0m
:
: Use optimization method: "Monte Carlo"
: Use efficiency computation method: "Event Selection"
: Use "FSmart" cuts for variable: 'myvar1'
: Use "FSmart" cuts for variable: 'myvar2'
: Use "FSmart" cuts for variable: 'var3'
: Use "FSmart" cuts for variable: 'var4'
Factory : Booking method: [1mCutsD[0m
:
CutsD : [dataset] : Create Transformation "Decorrelate" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
: Use optimization method: "Monte Carlo"
: Use efficiency computation method: "Event Selection"
: Use "FSmart" cuts for variable: 'myvar1'
: Use "FSmart" cuts for variable: 'myvar2'
: Use "FSmart" cuts for variable: 'var3'
: Use "FSmart" cuts for variable: 'var4'
Factory : Booking method: [1mLikelihood[0m
:
Factory : Booking method: [1mLikelihoodPCA[0m
:
LikelihoodPCA : [dataset] : Create Transformation "PCA" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : Booking method: [1mPDERS[0m
:
Factory : Booking method: [1mPDEFoam[0m
:
Factory : Booking method: [1mKNN[0m
:
Factory : Booking method: [1mLD[0m
:
DataSetFactory : [dataset] : Number of events in input trees
:
:
: Number of training and testing events
: ---------------------------------------------------------------------------
: Signal -- training events : 1000
: Signal -- testing events : 5000
: Signal -- training and testing events: 6000
: Background -- training events : 1000
: Background -- testing events : 5000
: Background -- training and testing events: 6000
:
DataSetInfo : Correlation matrix (Signal):
: ----------------------------------------------
: var1+var2 var1-var2 var3 var4
: var1+var2: +1.000 -0.039 +0.778 +0.931
: var1-var2: -0.039 +1.000 -0.111 +0.033
: var3: +0.778 -0.111 +1.000 +0.860
: var4: +0.931 +0.033 +0.860 +1.000
: ----------------------------------------------
DataSetInfo : Correlation matrix (Background):
: ----------------------------------------------
: var1+var2 var1-var2 var3 var4
: var1+var2: +1.000 +0.033 +0.784 +0.931
: var1-var2: +0.033 +1.000 -0.014 +0.112
: var3: +0.784 -0.014 +1.000 +0.863
: var4: +0.931 +0.112 +0.863 +1.000
: ----------------------------------------------
DataSetFactory : [dataset] :
:
Factory : Booking method: [1mFDA_GA[0m
:
: Create parameter interval for parameter 0 : [-1,1]
: Create parameter interval for parameter 1 : [-10,10]
: Create parameter interval for parameter 2 : [-10,10]
: Create parameter interval for parameter 3 : [-10,10]
: Create parameter interval for parameter 4 : [-10,10]
: User-defined formula string : "(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3"
: TFormula-compatible formula string: "[0]+[1]*[5]+[2]*[6]+[3]*[7]+[4]*[8]"
Factory : Booking method: [1mMLPBNN[0m
:
MLPBNN : [dataset] : Create Transformation "N" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
MLPBNN : Building Network.
: Initializing weights
Factory : Booking method: [1mSVM[0m
:
SVM : [dataset] : Create Transformation "Norm" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : Booking method: [1mBDT[0m
:
Factory : Booking method: [1mRuleFit[0m
:
Factory : [1mTrain all methods[0m
Factory : [dataset] : Create Transformation "I" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "D" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "P" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "G" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
Factory : [dataset] : Create Transformation "D" with events from all classes.
:
: Transformation, Variable selection :
: Input : variable 'myvar1' <---> Output : variable 'myvar1'
: Input : variable 'myvar2' <---> Output : variable 'myvar2'
: Input : variable 'var3' <---> Output : variable 'var3'
: Input : variable 'var4' <---> Output : variable 'var4'
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.015795 1.7576 [ -8.1442 7.2697 ]
: myvar2: -0.032371 1.1075 [ -3.9664 4.0259 ]
: var3: 0.0079046 1.0833 [ -5.0373 4.2785 ]
: var4: 0.15209 1.2738 [ -5.9505 4.6404 ]
: -----------------------------------------------------------
: Preparing the Decorrelation transformation...
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.10632 1.0000 [ -4.3319 4.1392 ]
: myvar2: -0.048116 1.0000 [ -3.6771 3.6585 ]
: var3: -0.11234 1.0000 [ -3.8237 3.8767 ]
: var4: 0.31322 1.0000 [ -4.0755 3.2827 ]
: -----------------------------------------------------------
: Preparing the Principle Component (PCA) transformation...
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.23164 2.3251 [ -11.197 8.9872 ]
: myvar2: 0.020728 1.1139 [ -4.0534 3.9437 ]
: var3: -0.0058717 0.59139 [ -2.0118 1.9675 ]
: var4: 0.0015685 0.33921 [ -0.99780 1.0229 ]
: -----------------------------------------------------------
: Preparing the Gaussian transformation...
: Preparing the Decorrelation transformation...
TFHandler_Factory : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.068457 1.0000 [ -3.7008 8.2137 ]
: myvar2: -0.015438 1.0000 [ -3.2309 5.6408 ]
: var3: -0.036609 1.0000 [ -3.3991 8.0121 ]
: var4: 0.10026 1.0000 [ -3.6179 5.5580 ]
: -----------------------------------------------------------
: Ranking input variables (method unspecific)...
IdTransformation : Ranking result (top variable is best ranked)
: -------------------------------------
: Rank : Variable : Separation
: -------------------------------------
: 1 : Variable 4 : 2.788e-01
: 2 : Variable 3 : 1.457e-01
: 3 : myvar1 : 8.442e-02
: 4 : Expression 2 : 2.854e-02
: -------------------------------------
Factory : Train method: Cuts for Classification
:
FitterBase : <MCFitter> Sampling, please be patient ...
: Elapsed time: 3.39 sec
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.1
: Corresponding background efficiency : 0.00631401
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -5.92112 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 0.372788
: Cut[ 2]: -1.03103 < var3 <= 1e+30
: Cut[ 3]: 1.92872 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.2
: Corresponding background efficiency : 0.0195456
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -2.39694 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 0.10647
: Cut[ 2]: -3.38371 < var3 <= 1e+30
: Cut[ 3]: 1.25336 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.3
: Corresponding background efficiency : 0.0361063
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -7.99661 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 0.516878
: Cut[ 2]: -2.4921 < var3 <= 1e+30
: Cut[ 3]: 1.01508 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.4
: Corresponding background efficiency : 0.0684033
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -7.92486 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 2.14952
: Cut[ 2]: -2.18407 < var3 <= 1e+30
: Cut[ 3]: 1.06279 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.5
: Corresponding background efficiency : 0.11419
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -5.79159 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 2.13777
: Cut[ 2]: -3.31357 < var3 <= 1e+30
: Cut[ 3]: 0.773468 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.6
: Corresponding background efficiency : 0.175374
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -4.44635 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 1.39479
: Cut[ 2]: -1.08281 < var3 <= 1e+30
: Cut[ 3]: 0.343334 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.7
: Corresponding background efficiency : 0.251037
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -4.12819 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 3.1382
: Cut[ 2]: -2.7095 < var3 <= 1e+30
: Cut[ 3]: 0.2305 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.8
: Corresponding background efficiency : 0.381722
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -3.65399 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 4.05488
: Cut[ 2]: -2.42379 < var3 <= 1e+30
: Cut[ 3]: -0.08696 < var4 <= 1e+30
: ------------------------------------------
: ------------------------------------------
Cuts : Cut values for requested signal efficiency: 0.9
: Corresponding background efficiency : 0.501121
: Transformation applied to input variables : None
: ------------------------------------------
: Cut[ 0]: -7.95481 < myvar1 <= 1e+30
: Cut[ 1]: -1e+30 < myvar2 <= 2.87258
: Cut[ 2]: -3.51779 < var3 <= 1e+30
: Cut[ 3]: -0.564128 < var4 <= 1e+30
: ------------------------------------------
: Elapsed time for training with 2000 events: 3.4 sec
Cuts : [dataset] : Evaluation of Cuts on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00222 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_Cuts.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_Cuts.class.C[0m
: Write monitoring histograms to file: TMVA.root:/dataset/Method_Cuts/Cuts
Factory : Training finished
:
Factory : Train method: CutsD for Classification
:
: Preparing the Decorrelation transformation...
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.10632 1.0000 [ -4.3319 4.1392 ]
: myvar2: -0.048116 1.0000 [ -3.6771 3.6585 ]
: var3: -0.11234 1.0000 [ -3.8237 3.8767 ]
: var4: 0.31322 1.0000 [ -4.0755 3.2827 ]
: -----------------------------------------------------------
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.10632 1.0000 [ -4.3319 4.1392 ]
: myvar2: -0.048116 1.0000 [ -3.6771 3.6585 ]
: var3: -0.11234 1.0000 [ -3.8237 3.8767 ]
: var4: 0.31322 1.0000 [ -4.0755 3.2827 ]
: -----------------------------------------------------------
FitterBase : <MCFitter> Sampling, please be patient ...
: Elapsed time: 2.51 sec
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.1
: Corresponding background efficiency : 0
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1153*[myvar1] + 0.03561*[myvar2] - 0.19997*[var3] - 0.79687*[var4] <= -0.776395
: Cut[ 1]: -1e+30 < + 0.03561*[myvar1] + 0.91609*[myvar2] + 0.11642*[var3] - 0.13113*[var4] <= 2.87488
: Cut[ 2]: -0.420354 < - 0.19997*[myvar1] + 0.11642*[myvar2] + 1.787*[var3] - 0.78593*[var4] <= 1e+30
: Cut[ 3]: 0.851522 < - 0.79687*[myvar1] - 0.13113*[myvar2] - 0.78593*[var3] + 2.1551*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.2
: Corresponding background efficiency : 0.00122436
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1153*[myvar1] + 0.03561*[myvar2] - 0.19997*[var3] - 0.79687*[var4] <= 0.396794
: Cut[ 1]: -1e+30 < + 0.03561*[myvar1] + 0.91609*[myvar2] + 0.11642*[var3] - 0.13113*[var4] <= 0.275151
: Cut[ 2]: -2.02883 < - 0.19997*[myvar1] + 0.11642*[myvar2] + 1.787*[var3] - 0.78593*[var4] <= 1e+30
: Cut[ 3]: 1.10579 < - 0.79687*[myvar1] - 0.13113*[myvar2] - 0.78593*[var3] + 2.1551*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.3
: Corresponding background efficiency : 0.00423513
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1153*[myvar1] + 0.03561*[myvar2] - 0.19997*[var3] - 0.79687*[var4] <= 3.07984
: Cut[ 1]: -1e+30 < + 0.03561*[myvar1] + 0.91609*[myvar2] + 0.11642*[var3] - 0.13113*[var4] <= 0.714845
: Cut[ 2]: -1.8912 < - 0.19997*[myvar1] + 0.11642*[myvar2] + 1.787*[var3] - 0.78593*[var4] <= 1e+30
: Cut[ 3]: 1.21044 < - 0.79687*[myvar1] - 0.13113*[myvar2] - 0.78593*[var3] + 2.1551*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.4
: Corresponding background efficiency : 0.0104494
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1153*[myvar1] + 0.03561*[myvar2] - 0.19997*[var3] - 0.79687*[var4] <= 1.90619
: Cut[ 1]: -1e+30 < + 0.03561*[myvar1] + 0.91609*[myvar2] + 0.11642*[var3] - 0.13113*[var4] <= 1.54226
: Cut[ 2]: -2.16052 < - 0.19997*[myvar1] + 0.11642*[myvar2] + 1.787*[var3] - 0.78593*[var4] <= 1e+30
: Cut[ 3]: 1.141 < - 0.79687*[myvar1] - 0.13113*[myvar2] - 0.78593*[var3] + 2.1551*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.5
: Corresponding background efficiency : 0.0191655
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1153*[myvar1] + 0.03561*[myvar2] - 0.19997*[var3] - 0.79687*[var4] <= 3.43583
: Cut[ 1]: -1e+30 < + 0.03561*[myvar1] + 0.91609*[myvar2] + 0.11642*[var3] - 0.13113*[var4] <= 1.91067
: Cut[ 2]: -1.72038 < - 0.19997*[myvar1] + 0.11642*[myvar2] + 1.787*[var3] - 0.78593*[var4] <= 1e+30
: Cut[ 3]: 0.987156 < - 0.79687*[myvar1] - 0.13113*[myvar2] - 0.78593*[var3] + 2.1551*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.6
: Corresponding background efficiency : 0.0359376
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1153*[myvar1] + 0.03561*[myvar2] - 0.19997*[var3] - 0.79687*[var4] <= 2.38728
: Cut[ 1]: -1e+30 < + 0.03561*[myvar1] + 0.91609*[myvar2] + 0.11642*[var3] - 0.13113*[var4] <= 3.08504
: Cut[ 2]: -2.28992 < - 0.19997*[myvar1] + 0.11642*[myvar2] + 1.787*[var3] - 0.78593*[var4] <= 1e+30
: Cut[ 3]: 0.869081 < - 0.79687*[myvar1] - 0.13113*[myvar2] - 0.78593*[var3] + 2.1551*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.7
: Corresponding background efficiency : 0.0670371
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1153*[myvar1] + 0.03561*[myvar2] - 0.19997*[var3] - 0.79687*[var4] <= 3.6643
: Cut[ 1]: -1e+30 < + 0.03561*[myvar1] + 0.91609*[myvar2] + 0.11642*[var3] - 0.13113*[var4] <= 2.57122
: Cut[ 2]: -2.05782 < - 0.19997*[myvar1] + 0.11642*[myvar2] + 1.787*[var3] - 0.78593*[var4] <= 1e+30
: Cut[ 3]: 0.607673 < - 0.79687*[myvar1] - 0.13113*[myvar2] - 0.78593*[var3] + 2.1551*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.8
: Corresponding background efficiency : 0.110457
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1153*[myvar1] + 0.03561*[myvar2] - 0.19997*[var3] - 0.79687*[var4] <= 2.55782
: Cut[ 1]: -1e+30 < + 0.03561*[myvar1] + 0.91609*[myvar2] + 0.11642*[var3] - 0.13113*[var4] <= 2.76359
: Cut[ 2]: -2.14703 < - 0.19997*[myvar1] + 0.11642*[myvar2] + 1.787*[var3] - 0.78593*[var4] <= 1e+30
: Cut[ 3]: 0.420775 < - 0.79687*[myvar1] - 0.13113*[myvar2] - 0.78593*[var3] + 2.1551*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: ------------------------------------------------------------------------------------------------------------------------
CutsD : Cut values for requested signal efficiency: 0.9
: Corresponding background efficiency : 0.255223
: Transformation applied to input variables : "Deco"
: ------------------------------------------------------------------------------------------------------------------------
: Cut[ 0]: -1e+30 < + 1.1153*[myvar1] + 0.03561*[myvar2] - 0.19997*[var3] - 0.79687*[var4] <= 3.23619
: Cut[ 1]: -1e+30 < + 0.03561*[myvar1] + 0.91609*[myvar2] + 0.11642*[var3] - 0.13113*[var4] <= 3.069
: Cut[ 2]: -3.65143 < - 0.19997*[myvar1] + 0.11642*[myvar2] + 1.787*[var3] - 0.78593*[var4] <= 1e+30
: Cut[ 3]: 0.0991792 < - 0.79687*[myvar1] - 0.13113*[myvar2] - 0.78593*[var3] + 2.1551*[var4] <= 1e+30
: ------------------------------------------------------------------------------------------------------------------------
: Elapsed time for training with 2000 events: 2.51 sec
CutsD : [dataset] : Evaluation of CutsD on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00387 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_CutsD.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_CutsD.class.C[0m
: Write monitoring histograms to file: TMVA.root:/dataset/Method_CutsD/CutsD
Factory : Training finished
:
Factory : Train method: Likelihood for Classification
:
:
: [1m================================================================[0m
: [1mH e l p f o r M V A m e t h o d [ Likelihood ] :[0m
:
: [1m--- Short description:[0m
:
: The maximum-likelihood classifier models the data with probability
: density functions (PDF) reproducing the signal and background
: distributions of the input variables. Correlations among the
: variables are ignored.
:
: [1m--- Performance optimisation:[0m
:
: Required for good performance are decorrelated input variables
: (PCA transformation via the option "VarTransform=Decorrelate"
: may be tried). Irreducible non-linear correlations may be reduced
: by precombining strongly correlated input variables, or by simply
: removing one of the variables.
:
: [1m--- Performance tuning via configuration options:[0m
:
: High fidelity PDF estimates are mandatory, i.e., sufficient training
: statistics is required to populate the tails of the distributions
: It would be a surprise if the default Spline or KDE kernel parameters
: provide a satisfying fit to the data. The user is advised to properly
: tune the events per bin and smooth options in the spline cases
: individually per variable. If the KDE kernel is used, the adaptive
: Gaussian kernel may lead to artefacts, so please always also try
: the non-adaptive one.
:
: All tuning parameters must be adjusted individually for each input
: variable!
:
: <Suppress this message by specifying "!H" in the booking option>
: [1m================================================================[0m
:
: Filling reference histograms
: Building PDF out of reference histograms
: Elapsed time for training with 2000 events: 0.0139 sec
Likelihood : [dataset] : Evaluation of Likelihood on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00393 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_Likelihood.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_Likelihood.class.C[0m
: Write monitoring histograms to file: TMVA.root:/dataset/Method_Likelihood/Likelihood
Factory : Training finished
:
Factory : Train method: LikelihoodPCA for Classification
:
: Preparing the Principle Component (PCA) transformation...
TFHandler_LikelihoodPCA : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.23164 2.3251 [ -11.197 8.9872 ]
: myvar2: 0.020728 1.1139 [ -4.0534 3.9437 ]
: var3: -0.0058717 0.59139 [ -2.0118 1.9675 ]
: var4: 0.0015685 0.33921 [ -0.99780 1.0229 ]
: -----------------------------------------------------------
: Filling reference histograms
: Building PDF out of reference histograms
: Elapsed time for training with 2000 events: 0.0162 sec
LikelihoodPCA : [dataset] : Evaluation of LikelihoodPCA on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00603 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_LikelihoodPCA.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_LikelihoodPCA.class.C[0m
: Write monitoring histograms to file: TMVA.root:/dataset/Method_LikelihoodPCA/LikelihoodPCA
Factory : Training finished
:
Factory : Train method: PDERS for Classification
:
: Elapsed time for training with 2000 events: 0.00318 sec
PDERS : [dataset] : Evaluation of PDERS on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.254 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_PDERS.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_PDERS.class.C[0m
Factory : Training finished
:
Factory : Train method: PDEFoam for Classification
:
PDEFoam : NormMode=NUMEVENTS chosen. Note that only NormMode=EqualNumEvents ensures that Discriminant values correspond to signal probabilities.
: Build up discriminator foam
: Elapsed time: 0.262 sec
: Elapsed time for training with 2000 events: 0.295 sec
PDEFoam : [dataset] : Evaluation of PDEFoam on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0231 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_PDEFoam.weights.xml[0m
: writing foam DiscrFoam to file
: Foams written to file: [0;36mdataset/weights/TMVAClassification_PDEFoam.weights_foams.root[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_PDEFoam.class.C[0m
Factory : Training finished
:
Factory : Train method: KNN for Classification
:
:
: [1m================================================================[0m
: [1mH e l p f o r M V A m e t h o d [ KNN ] :[0m
:
: [1m--- Short description:[0m
:
: The k-nearest neighbor (k-NN) algorithm is a multi-dimensional classification
: and regression algorithm. Similarly to other TMVA algorithms, k-NN uses a set of
: training events for which a classification category/regression target is known.
: The k-NN method compares a test event to all training events using a distance
: function, which is an Euclidean distance in a space defined by the input variables.
: The k-NN method, as implemented in TMVA, uses a kd-tree algorithm to perform a
: quick search for the k events with shortest distance to the test event. The method
: returns a fraction of signal events among the k neighbors. It is recommended
: that a histogram which stores the k-NN decision variable is binned with k+1 bins
: between 0 and 1.
:
: [1m--- Performance tuning via configuration options: [0m
:
: The k-NN method estimates a density of signal and background events in a
: neighborhood around the test event. The method assumes that the density of the
: signal and background events is uniform and constant within the neighborhood.
: k is an adjustable parameter and it determines an average size of the
: neighborhood. Small k values (less than 10) are sensitive to statistical
: fluctuations and large (greater than 100) values might not sufficiently capture
: local differences between events in the training set. The speed of the k-NN
: method also increases with larger values of k.
:
: The k-NN method assigns equal weight to all input variables. Different scales
: among the input variables is compensated using ScaleFrac parameter: the input
: variables are scaled so that the widths for central ScaleFrac*100% events are
: equal among all the input variables.
:
: [1m--- Additional configuration options: [0m
:
: The method inclues an option to use a Gaussian kernel to smooth out the k-NN
: response. The kernel re-weights events using a distance to the test event.
:
: <Suppress this message by specifying "!H" in the booking option>
: [1m================================================================[0m
:
KNN : <Train> start...
: Reading 2000 events
: Number of signal events 1000
: Number of background events 1000
: Creating kd-tree with 2000 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 2000 values
: <Fill> Class 1 has 1000 events
: <Fill> Class 2 has 1000 events
: Elapsed time for training with 2000 events: 0.00315 sec
KNN : [dataset] : Evaluation of KNN on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0666 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_KNN.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_KNN.class.C[0m
Factory : Training finished
:
Factory : Train method: LD for Classification
:
:
: [1m================================================================[0m
: [1mH e l p f o r M V A m e t h o d [ LD ] :[0m
:
: [1m--- Short description:[0m
:
: Linear discriminants select events by distinguishing the mean
: values of the signal and background distributions in a trans-
: formed variable space where linear correlations are removed.
: The LD implementation here is equivalent to the "Fisher" discriminant
: for classification, but also provides linear regression.
:
: (More precisely: the "linear discriminator" determines
: an axis in the (correlated) hyperspace of the input
: variables such that, when projecting the output classes
: (signal and background) upon this axis, they are pushed
: as far as possible away from each other, while events
: of a same class are confined in a close vicinity. The
: linearity property of this classifier is reflected in the
: metric with which "far apart" and "close vicinity" are
: determined: the covariance matrix of the discriminating
: variable space.)
:
: [1m--- Performance optimisation:[0m
:
: Optimal performance for the linear discriminant is obtained for
: linearly correlated Gaussian-distributed variables. Any deviation
: from this ideal reduces the achievable separation power. In
: particular, no discrimination at all is achieved for a variable
: that has the same sample mean for signal and background, even if
: the shapes of the distributions are very different. Thus, the linear
: discriminant often benefits from a suitable transformation of the
: input variables. For example, if a variable x in [-1,1] has a
: a parabolic signal distributions, and a uniform background
: distributions, their mean value is zero in both cases, leading
: to no separation. The simple transformation x -> |x| renders this
: variable powerful for the use in a linear discriminant.
:
: [1m--- Performance tuning via configuration options:[0m
:
: <None>
:
: <Suppress this message by specifying "!H" in the booking option>
: [1m================================================================[0m
:
LD : Results for LD coefficients:
: -----------------------
: Variable: Coefficient:
: -----------------------
: myvar1: -0.326
: myvar2: -0.080
: var3: -0.195
: var4: +0.758
: (offset): -0.056
: -----------------------
: Elapsed time for training with 2000 events: 0.000988 sec
LD : [dataset] : Evaluation of LD on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00219 sec
: Dataset[dataset] : <CreateMVAPdfs> Separation from histogram (PDF): 0.577 (0.000)
: Dataset[dataset] : Evaluation of LD on training sample
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_LD.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_LD.class.C[0m
Factory : Training finished
:
Factory : Train method: FDA_GA for Classification
:
:
: [1m================================================================[0m
: [1mH e l p f o r M V A m e t h o d [ FDA_GA ] :[0m
:
: [1m--- Short description:[0m
:
: The function discriminant analysis (FDA) is a classifier suitable
: to solve linear or simple nonlinear discrimination problems.
:
: The user provides the desired function with adjustable parameters
: via the configuration option string, and FDA fits the parameters to
: it, requiring the signal (background) function value to be as close
: as possible to 1 (0). Its advantage over the more involved and
: automatic nonlinear discriminators is the simplicity and transparency
: of the discrimination expression. A shortcoming is that FDA will
: underperform for involved problems with complicated, phase space
: dependent nonlinear correlations.
:
: Please consult the Users Guide for the format of the formula string
: and the allowed parameter ranges:
: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf
:
: [1m--- Performance optimisation:[0m
:
: The FDA performance depends on the complexity and fidelity of the
: user-defined discriminator function. As a general rule, it should
: be able to reproduce the discrimination power of any linear
: discriminant analysis. To reach into the nonlinear domain, it is
: useful to inspect the correlation profiles of the input variables,
: and add quadratic and higher polynomial terms between variables as
: necessary. Comparison with more involved nonlinear classifiers can
: be used as a guide.
:
: [1m--- Performance tuning via configuration options:[0m
:
: Depending on the function used, the choice of "FitMethod" is
: crucial for getting valuable solutions with FDA. As a guideline it
: is recommended to start with "FitMethod=MINUIT". When more complex
: functions are used where MINUIT does not converge to reasonable
: results, the user should switch to non-gradient FitMethods such
: as GeneticAlgorithm (GA) or Monte Carlo (MC). It might prove to be
: useful to combine GA (or MC) with MINUIT by setting the option
: "Converger=MINUIT". GA (MC) will then set the starting parameters
: for MINUIT such that the basic quality of GA (MC) of finding global
: minima is combined with the efficacy of MINUIT of finding local
: minima.
:
: <Suppress this message by specifying "!H" in the booking option>
: [1m================================================================[0m
:
FitterBase : <GeneticFitter> Optimisation, please be patient ... (inaccurate progress timing for GA)
: Elapsed time: 0.439 sec
FDA_GA : Results for parameter fit using "GA" fitter:
: -----------------------
: Parameter: Fit result:
: -----------------------
: Par(0): 0.361717
: Par(1): 0
: Par(2): 0
: Par(3): 0.111212
: Par(4): 0
: -----------------------
: Discriminator expression: "(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3"
: Value of estimator at minimum: 0.478548
: Elapsed time for training with 2000 events: 0.464 sec
FDA_GA : [dataset] : Evaluation of FDA_GA on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00223 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_FDA_GA.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_FDA_GA.class.C[0m
Factory : Training finished
:
Factory : Train method: MLPBNN for Classification
:
:
: [1m================================================================[0m
: [1mH e l p f o r M V A m e t h o d [ MLPBNN ] :[0m
:
: [1m--- Short description:[0m
:
: The MLP artificial neural network (ANN) is a traditional feed-
: forward multilayer perceptron implementation. The MLP has a user-
: defined hidden layer architecture, while the number of input (output)
: nodes is determined by the input variables (output classes, i.e.,
: signal and one background).
:
: [1m--- Performance optimisation:[0m
:
: Neural networks are stable and performing for a large variety of
: linear and non-linear classification problems. However, in contrast
: to (e.g.) boosted decision trees, the user is advised to reduce the
: number of input variables that have only little discrimination power.
:
: In the tests we have carried out so far, the MLP and ROOT networks
: (TMlpANN, interfaced via TMVA) performed equally well, with however
: a clear speed advantage for the MLP. The Clermont-Ferrand neural
: net (CFMlpANN) exhibited worse classification performance in these
: tests, which is partly due to the slow convergence of its training
: (at least 10k training cycles are required to achieve approximately
: competitive results).
:
: [1mOvertraining: [0monly the TMlpANN performs an explicit separation of the
: full training sample into independent training and validation samples.
: We have found that in most high-energy physics applications the
: available degrees of freedom (training events) are sufficient to
: constrain the weights of the relatively simple architectures required
: to achieve good performance. Hence no overtraining should occur, and
: the use of validation samples would only reduce the available training
: information. However, if the performance on the training sample is
: found to be significantly better than the one found with the inde-
: pendent test sample, caution is needed. The results for these samples
: are printed to standard output at the end of each training job.
:
: [1m--- Performance tuning via configuration options:[0m
:
: The hidden layer architecture for all ANNs is defined by the option
: "HiddenLayers=N+1,N,...", where here the first hidden layer has N+1
: neurons and the second N neurons (and so on), and where N is the number
: of input variables. Excessive numbers of hidden layers should be avoided,
: in favour of more neurons in the first hidden layer.
:
: The number of cycles should be above 500. As said, if the number of
: adjustable weights is small compared to the training sample size,
: using a large number of training samples should not lead to overtraining.
:
: <Suppress this message by specifying "!H" in the booking option>
: [1m================================================================[0m
:
TFHandler_MLPBNN : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.058784 0.22805 [ -1.0000 1.0000 ]
: myvar2: -0.015539 0.27713 [ -1.0000 1.0000 ]
: var3: 0.083156 0.23258 [ -1.0000 1.0000 ]
: var4: 0.15243 0.24055 [ -1.0000 1.0000 ]
: -----------------------------------------------------------
: Training Network
:
: Finalizing handling of Regulator terms, trainE=0.669281 testE=0.743501
: Done with handling of Regulator terms
: Elapsed time for training with 2000 events: 2.29 sec
MLPBNN : [dataset] : Evaluation of MLPBNN on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.0053 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_MLPBNN.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_MLPBNN.class.C[0m
: Write special histos to file: TMVA.root:/dataset/Method_MLPBNN/MLPBNN
Factory : Training finished
:
Factory : Train method: SVM for Classification
:
TFHandler_SVM : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.058784 0.22805 [ -1.0000 1.0000 ]
: myvar2: -0.015539 0.27713 [ -1.0000 1.0000 ]
: var3: 0.083156 0.23258 [ -1.0000 1.0000 ]
: var4: 0.15243 0.24055 [ -1.0000 1.0000 ]
: -----------------------------------------------------------
: Building SVM Working Set...with 2000 event instances
: Elapsed time for Working Set build: 0.141 sec
: Sorry, no computing time forecast available for SVM, please wait ...
: Elapsed time: 0.494 sec
: Elapsed time for training with 2000 events: 0.64 sec
SVM : [dataset] : Evaluation of SVM on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.101 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_SVM.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_SVM.class.C[0m
Factory : Training finished
:
Factory : Train method: BDT for Classification
:
BDT : #events: (reweighted) sig: 1000 bkg: 1000
: #events: (unweighted) sig: 1000 bkg: 1000
: Training 850 Decision Trees ... patience please
: Elapsed time for training with 2000 events: 0.482 sec
BDT : [dataset] : Evaluation of BDT on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.198 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_BDT.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_BDT.class.C[0m
Factory : Training finished
:
Factory : Train method: RuleFit for Classification
:
:
: [1m================================================================[0m
: [1mH e l p f o r M V A m e t h o d [ RuleFit ] :[0m
:
: [1m--- Short description:[0m
:
: This method uses a collection of so called rules to create a
: discriminating scoring function. Each rule consists of a series
: of cuts in parameter space. The ensemble of rules are created
: from a forest of decision trees, trained using the training data.
: Each node (apart from the root) corresponds to one rule.
: The scoring function is then obtained by linearly combining
: the rules. A fitting procedure is applied to find the optimum
: set of coefficients. The goal is to find a model with few rules
: but with a strong discriminating power.
:
: [1m--- Performance optimisation:[0m
:
: There are two important considerations to make when optimising:
:
: 1. Topology of the decision tree forest
: 2. Fitting of the coefficients
:
: The maximum complexity of the rules is defined by the size of
: the trees. Large trees will yield many complex rules and capture
: higher order correlations. On the other hand, small trees will
: lead to a smaller ensemble with simple rules, only capable of
: modeling simple structures.
: Several parameters exists for controlling the complexity of the
: rule ensemble.
:
: The fitting procedure searches for a minimum using a gradient
: directed path. Apart from step size and number of steps, the
: evolution of the path is defined by a cut-off parameter, tau.
: This parameter is unknown and depends on the training data.
: A large value will tend to give large weights to a few rules.
: Similarly, a small value will lead to a large set of rules
: with similar weights.
:
: A final point is the model used; rules and/or linear terms.
: For a given training sample, the result may improve by adding
: linear terms. If best performance is obtained using only linear
: terms, it is very likely that the Fisher discriminant would be
: a better choice. Ideally the fitting procedure should be able to
: make this choice by giving appropriate weights for either terms.
:
: [1m--- Performance tuning via configuration options:[0m
:
: I. TUNING OF RULE ENSEMBLE:
:
: [1mForestType [0m: Recommended is to use the default "AdaBoost".
: [1mnTrees [0m: More trees leads to more rules but also slow
: performance. With too few trees the risk is
: that the rule ensemble becomes too simple.
: [1mfEventsMin [0m
: [1mfEventsMax [0m: With a lower min, more large trees will be generated
: leading to more complex rules.
: With a higher max, more small trees will be
: generated leading to more simple rules.
: By changing this range, the average complexity
: of the rule ensemble can be controlled.
: [1mRuleMinDist [0m: By increasing the minimum distance between
: rules, fewer and more diverse rules will remain.
: Initially it is a good idea to keep this small
: or zero and let the fitting do the selection of
: rules. In order to reduce the ensemble size,
: the value can then be increased.
:
: II. TUNING OF THE FITTING:
:
: [1mGDPathEveFrac [0m: fraction of events in path evaluation
: Increasing this fraction will improve the path
: finding. However, a too high value will give few
: unique events available for error estimation.
: It is recommended to use the default = 0.5.
: [1mGDTau [0m: cutoff parameter tau
: By default this value is set to -1.0.
: This means that the cut off parameter is
: automatically estimated. In most cases
: this should be fine. However, you may want
: to fix this value if you already know it
: and want to reduce on training time.
: [1mGDTauPrec [0m: precision of estimated tau
: Increase this precision to find a more
: optimum cut-off parameter.
: [1mGDNStep [0m: number of steps in path search
: If the number of steps is too small, then
: the program will give a warning message.
:
: III. WARNING MESSAGES
:
: [1mRisk(i+1)>=Risk(i) in path[0m
: [1mChaotic behaviour of risk evolution.[0m
: The error rate was still decreasing at the end
: By construction the Risk should always decrease.
: However, if the training sample is too small or
: the model is overtrained, such warnings can
: occur.
: The warnings can safely be ignored if only a
: few (<3) occur. If more warnings are generated,
: the fitting fails.
: A remedy may be to increase the value
: [1mGDValidEveFrac[0m to 1.0 (or a larger value).
: In addition, if [1mGDPathEveFrac[0m is too high
: the same warnings may occur since the events
: used for error estimation are also used for
: path estimation.
: Another possibility is to modify the model -
: See above on tuning the rule ensemble.
:
: [1mThe error rate was still decreasing at the end of the path[0m
: Too few steps in path! Increase [1mGDNSteps[0m.
:
: [1mReached minimum early in the search[0m
: Minimum was found early in the fitting. This
: may indicate that the used step size [1mGDStep[0m.
: was too large. Reduce it and rerun.
: If the results still are not OK, modify the
: model either by modifying the rule ensemble
: or add/remove linear terms
:
: <Suppress this message by specifying "!H" in the booking option>
: [1m================================================================[0m
:
RuleFit : -------------------RULE ENSEMBLE SUMMARY------------------------
: Tree training method : AdaBoost
: Number of events per tree : 2000
: Number of trees : 20
: Number of generated rules : 188
: Idem, after cleanup : 65
: Average number of cuts per rule : 2.71
: Spread in number of cuts per rules : 1.11
: ----------------------------------------------------------------
:
: GD path scan - the scan stops when the max num. of steps is reached or a min is found
: Estimating the cutoff parameter tau. The estimated time is a pessimistic maximum.
: Best path found with tau = 0.0400 after 1.35 sec
: Fitting model...
<WARNING> : Risk(i+1)>=Risk(i) in path
: Risk(i+1)>=Risk(i) in path
: Risk(i+1)>=Risk(i) in path
:
: Minimisation elapsed time : 0.108 sec
: ----------------------------------------------------------------
: Found minimum at step 300 with error = 0.54607
: Reason for ending loop: clear minima found
: ----------------------------------------------------------------
<WARNING> : Reached minimum early in the search
: Check results and maybe decrease GDStep size
: Removed 13 out of a total of 65 rules with importance < 0.001
:
: ================================================================
: M o d e l
: ================================================================
RuleFit : Offset (a0) = 1.82167
: ------------------------------------
: Linear model (weights unnormalised)
: ------------------------------------
: Variable : Weights : Importance
: ------------------------------------
: myvar1 : -2.306e-01 : 0.902
: myvar2 : -3.918e-02 : 0.096
: var3 : 7.237e-03 : 0.017
: var4 : 3.519e-01 : 1.000
: ------------------------------------
: Number of rules = 52
: Printing the first 10 rules, ordered in importance.
: Rule 1 : Importance = 0.5227
: Cut 1 : var3 < 0.286
: Cut 2 : var4 < -0.615
: Rule 2 : Importance = 0.3538
: Cut 1 : 0.664 < myvar1
: Cut 2 : var4 < 1.85
: Rule 3 : Importance = 0.3521
: Cut 1 : -0.804 < myvar1
: Rule 4 : Importance = 0.3248
: Cut 1 : var3 < 0.286
: Cut 2 : -0.615 < var4
: Rule 5 : Importance = 0.3102
: Cut 1 : myvar1 < 1.4
: Cut 2 : -0.725 < myvar2
: Cut 3 : var4 < -0.672
: Rule 6 : Importance = 0.2826
: Cut 1 : myvar1 < 2.87
: Cut 2 : var4 < 1.21
: Rule 7 : Importance = 0.2741
: Cut 1 : var4 < 1.11
: Rule 8 : Importance = 0.2265
: Cut 1 : myvar1 < 1.36
: Cut 2 : myvar2 < 0.22
: Cut 3 : var4 < -0.412
: Rule 9 : Importance = 0.2128
: Cut 1 : 0.22 < myvar2
: Rule 10 : Importance = 0.1989
: Cut 1 : -0.0703 < myvar1
: Cut 2 : 0.358 < myvar2
: Skipping the next 42 rules
: ================================================================
:
<WARNING> : No input variable directory found - BUG?
: Elapsed time for training with 2000 events: 1.49 sec
RuleFit : [dataset] : Evaluation of RuleFit on training sample (2000 events)
: Elapsed time for evaluation of 2000 events: 0.00429 sec
: Creating xml weight file: [0;36mdataset/weights/TMVAClassification_RuleFit.weights.xml[0m
: Creating standalone class: [0;36mdataset/weights/TMVAClassification_RuleFit.class.C[0m
: Write monitoring ntuple to file: TMVA.root:/dataset/Method_RuleFit/RuleFit
Factory : Training finished
:
: Ranking input variables (method specific)...
: No variable ranking supplied by classifier: Cuts
: No variable ranking supplied by classifier: CutsD
Likelihood : Ranking result (top variable is best ranked)
: -------------------------------------
: Rank : Variable : Delta Separation
: -------------------------------------
: 1 : var4 : 4.900e-02
: 2 : myvar1 : 1.516e-02
: 3 : var3 : 6.086e-03
: 4 : myvar2 : -8.570e-03
: -------------------------------------
LikelihoodPCA : Ranking result (top variable is best ranked)
: -------------------------------------
: Rank : Variable : Delta Separation
: -------------------------------------
: 1 : var4 : 3.533e-01
: 2 : myvar1 : 4.324e-02
: 3 : var3 : 1.341e-02
: 4 : myvar2 : -8.230e-03
: -------------------------------------
: No variable ranking supplied by classifier: PDERS
PDEFoam : Ranking result (top variable is best ranked)
: ----------------------------------------
: Rank : Variable : Variable Importance
: ----------------------------------------
: 1 : myvar1 : 3.636e-01
: 2 : var4 : 3.409e-01
: 3 : var3 : 2.045e-01
: 4 : myvar2 : 9.091e-02
: ----------------------------------------
: No variable ranking supplied by classifier: KNN
LD : Ranking result (top variable is best ranked)
: ---------------------------------
: Rank : Variable : Discr. power
: ---------------------------------
: 1 : var4 : 7.577e-01
: 2 : myvar1 : 3.264e-01
: 3 : var3 : 1.948e-01
: 4 : myvar2 : 8.030e-02
: ---------------------------------
: No variable ranking supplied by classifier: FDA_GA
MLPBNN : Ranking result (top variable is best ranked)
: -------------------------------
: Rank : Variable : Importance
: -------------------------------
: 1 : var4 : 1.755e+00
: 2 : myvar1 : 1.259e+00
: 3 : myvar2 : 5.211e-01
: 4 : var3 : 4.324e-01
: -------------------------------
: No variable ranking supplied by classifier: SVM
BDT : Ranking result (top variable is best ranked)
: ----------------------------------------
: Rank : Variable : Variable Importance
: ----------------------------------------
: 1 : var4 : 2.785e-01
: 2 : myvar1 : 2.561e-01
: 3 : myvar2 : 2.368e-01
: 4 : var3 : 2.285e-01
: ----------------------------------------
RuleFit : Ranking result (top variable is best ranked)
: -------------------------------
: Rank : Variable : Importance
: -------------------------------
: 1 : var4 : 1.000e+00
: 2 : myvar1 : 8.309e-01
: 3 : myvar2 : 5.150e-01
: 4 : var3 : 4.274e-01
: -------------------------------
Factory : === Destroy and recreate all methods via weight files for testing ===
:
: Read cuts optimised using sample of MC events
: Reading 100 signal efficiency bins for 4 variables
: Read cuts optimised using sample of MC events
: Reading 100 signal efficiency bins for 4 variables
: signal and background scales: 0.001 0.001
: Read foams from file: [0;36mdataset/weights/TMVAClassification_PDEFoam.weights_foams.root[0m
: Creating kd-tree with 2000 events
: Computing scale factor for 1d distributions: (ifrac, bottom, top) = (80%, 10%, 90%)
ModulekNN : Optimizing tree for 4 variables with 2000 values
: <Fill> Class 1 has 1000 events
: <Fill> Class 2 has 1000 events
: User-defined formula string : "(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3"
: TFormula-compatible formula string: "[0]+[1]*[5]+[2]*[6]+[3]*[7]+[4]*[8]"
MLPBNN : Building Network.
: Initializing weights
Factory : [1mTest all methods[0m
Factory : Test method: Cuts for Classification performance
:
Cuts : [dataset] : Evaluation of Cuts on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00278 sec
Factory : Test method: CutsD for Classification performance
:
CutsD : [dataset] : Evaluation of CutsD on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00998 sec
Factory : Test method: Likelihood for Classification performance
:
Likelihood : [dataset] : Evaluation of Likelihood on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0133 sec
Factory : Test method: LikelihoodPCA for Classification performance
:
LikelihoodPCA : [dataset] : Evaluation of LikelihoodPCA on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0317 sec
Factory : Test method: PDERS for Classification performance
:
PDERS : [dataset] : Evaluation of PDERS on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.954 sec
Factory : Test method: PDEFoam for Classification performance
:
PDEFoam : [dataset] : Evaluation of PDEFoam on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0968 sec
Factory : Test method: KNN for Classification performance
:
KNN : [dataset] : Evaluation of KNN on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.291 sec
Factory : Test method: LD for Classification performance
:
LD : [dataset] : Evaluation of LD on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.00406 sec
: Dataset[dataset] : Evaluation of LD on testing sample
Factory : Test method: FDA_GA for Classification performance
:
FDA_GA : [dataset] : Evaluation of FDA_GA on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0042 sec
Factory : Test method: MLPBNN for Classification performance
:
MLPBNN : [dataset] : Evaluation of MLPBNN on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0165 sec
Factory : Test method: SVM for Classification performance
:
SVM : [dataset] : Evaluation of SVM on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.46 sec
Factory : Test method: BDT for Classification performance
:
BDT : [dataset] : Evaluation of BDT on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.579 sec
Factory : Test method: RuleFit for Classification performance
:
RuleFit : [dataset] : Evaluation of RuleFit on testing sample (10000 events)
: Elapsed time for evaluation of 10000 events: 0.0149 sec
Factory : [1mEvaluate all methods[0m
Factory : Evaluate classifier: Cuts
:
<WARNING> : You have asked for histogram MVA_EFF_BvsS which does not seem to exist in *Results* .. better don't use it
<WARNING> : You have asked for histogram EFF_BVSS_TR which does not seem to exist in *Results* .. better don't use it
TFHandler_Cuts : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.20301 1.7142 [ -9.8605 7.9024 ]
: myvar2: -0.048747 1.1049 [ -4.0854 4.0291 ]
: var3: 0.15975 1.0530 [ -5.3563 4.6430 ]
: var4: 0.42792 1.2213 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: CutsD
:
<WARNING> : You have asked for histogram MVA_EFF_BvsS which does not seem to exist in *Results* .. better don't use it
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.14827 0.98414 [ -5.4951 4.9058 ]
: myvar2: -0.074944 0.99282 [ -3.6988 3.6412 ]
: var3: -0.097110 1.0023 [ -4.4666 4.4328 ]
: var4: 0.64127 0.94688 [ -3.6875 3.7411 ]
: -----------------------------------------------------------
<WARNING> : You have asked for histogram EFF_BVSS_TR which does not seem to exist in *Results* .. better don't use it
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.10632 1.0000 [ -4.3319 4.1392 ]
: myvar2: -0.048116 1.0000 [ -3.6771 3.6585 ]
: var3: -0.11234 1.0000 [ -3.8237 3.8767 ]
: var4: 0.31322 1.0000 [ -4.0755 3.2827 ]
: -----------------------------------------------------------
TFHandler_CutsD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: -0.14827 0.98414 [ -5.4951 4.9058 ]
: myvar2: -0.074944 0.99282 [ -3.6988 3.6412 ]
: var3: -0.097110 1.0023 [ -4.4666 4.4328 ]
: var4: 0.64127 0.94688 [ -3.6875 3.7411 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: Likelihood
:
Likelihood : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_Likelihood : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.20301 1.7142 [ -9.8605 7.9024 ]
: myvar2: -0.048747 1.1049 [ -4.0854 4.0291 ]
: var3: 0.15975 1.0530 [ -5.3563 4.6430 ]
: var4: 0.42792 1.2213 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: LikelihoodPCA
:
TFHandler_LikelihoodPCA : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.74376 2.2501 [ -12.861 10.366 ]
: myvar2: -0.14257 1.1171 [ -4.0631 3.9863 ]
: var3: -0.19100 0.58225 [ -2.2879 1.9945 ]
: var4: -0.32094 0.33118 [ -1.4056 0.88211 ]
: -----------------------------------------------------------
LikelihoodPCA : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_LikelihoodPCA : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.74376 2.2501 [ -12.861 10.366 ]
: myvar2: -0.14257 1.1171 [ -4.0631 3.9863 ]
: var3: -0.19100 0.58225 [ -2.2879 1.9945 ]
: var4: -0.32094 0.33118 [ -1.4056 0.88211 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: PDERS
:
PDERS : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_PDERS : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.20301 1.7142 [ -9.8605 7.9024 ]
: myvar2: -0.048747 1.1049 [ -4.0854 4.0291 ]
: var3: 0.15975 1.0530 [ -5.3563 4.6430 ]
: var4: 0.42792 1.2213 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: PDEFoam
:
PDEFoam : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_PDEFoam : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.20301 1.7142 [ -9.8605 7.9024 ]
: myvar2: -0.048747 1.1049 [ -4.0854 4.0291 ]
: var3: 0.15975 1.0530 [ -5.3563 4.6430 ]
: var4: 0.42792 1.2213 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: KNN
:
KNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_KNN : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.20301 1.7142 [ -9.8605 7.9024 ]
: myvar2: -0.048747 1.1049 [ -4.0854 4.0291 ]
: var3: 0.15975 1.0530 [ -5.3563 4.6430 ]
: var4: 0.42792 1.2213 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: LD
:
LD : [dataset] : Loop over test events and fill histograms with classifier response...
:
: Also filling probability and rarity histograms (on request)...
TFHandler_LD : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.20301 1.7142 [ -9.8605 7.9024 ]
: myvar2: -0.048747 1.1049 [ -4.0854 4.0291 ]
: var3: 0.15975 1.0530 [ -5.3563 4.6430 ]
: var4: 0.42792 1.2213 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: FDA_GA
:
FDA_GA : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_FDA_GA : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.20301 1.7142 [ -9.8605 7.9024 ]
: myvar2: -0.048747 1.1049 [ -4.0854 4.0291 ]
: var3: 0.15975 1.0530 [ -5.3563 4.6430 ]
: var4: 0.42792 1.2213 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: MLPBNN
:
TFHandler_MLPBNN : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.083076 0.22243 [ -1.2227 1.0821 ]
: myvar2: -0.019637 0.27648 [ -1.0298 1.0008 ]
: var3: 0.11576 0.22607 [ -1.0685 1.0783 ]
: var4: 0.20452 0.23064 [ -1.1921 1.0737 ]
: -----------------------------------------------------------
MLPBNN : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_MLPBNN : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.083076 0.22243 [ -1.2227 1.0821 ]
: myvar2: -0.019637 0.27648 [ -1.0298 1.0008 ]
: var3: 0.11576 0.22607 [ -1.0685 1.0783 ]
: var4: 0.20452 0.23064 [ -1.1921 1.0737 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: SVM
:
TFHandler_SVM : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.083076 0.22243 [ -1.2227 1.0821 ]
: myvar2: -0.019637 0.27648 [ -1.0298 1.0008 ]
: var3: 0.11576 0.22607 [ -1.0685 1.0783 ]
: var4: 0.20452 0.23064 [ -1.1921 1.0737 ]
: -----------------------------------------------------------
SVM : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_SVM : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.083076 0.22243 [ -1.2227 1.0821 ]
: myvar2: -0.019637 0.27648 [ -1.0298 1.0008 ]
: var3: 0.11576 0.22607 [ -1.0685 1.0783 ]
: var4: 0.20452 0.23064 [ -1.1921 1.0737 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: BDT
:
BDT : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_BDT : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.20301 1.7142 [ -9.8605 7.9024 ]
: myvar2: -0.048747 1.1049 [ -4.0854 4.0291 ]
: var3: 0.15975 1.0530 [ -5.3563 4.6430 ]
: var4: 0.42792 1.2213 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
Factory : Evaluate classifier: RuleFit
:
RuleFit : [dataset] : Loop over test events and fill histograms with classifier response...
:
TFHandler_RuleFit : Variable Mean RMS [ Min Max ]
: -----------------------------------------------------------
: myvar1: 0.20301 1.7142 [ -9.8605 7.9024 ]
: myvar2: -0.048747 1.1049 [ -4.0854 4.0291 ]
: var3: 0.15975 1.0530 [ -5.3563 4.6430 ]
: var4: 0.42792 1.2213 [ -6.9675 5.0307 ]
: -----------------------------------------------------------
:
: Evaluation results ranked by best signal efficiency and purity (area)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA
: Name: Method: ROC-integ
: dataset LD : 0.919
: dataset MLPBNN : 0.916
: dataset LikelihoodPCA : 0.912
: dataset SVM : 0.911
: dataset CutsD : 0.901
: dataset BDT : 0.877
: dataset RuleFit : 0.869
: dataset KNN : 0.842
: dataset PDEFoam : 0.822
: dataset PDERS : 0.807
: dataset Cuts : 0.792
: dataset Likelihood : 0.761
: dataset FDA_GA : 0.718
: -------------------------------------------------------------------------------------------------------------------
:
: Testing efficiency compared to training efficiency (overtraining check)
: -------------------------------------------------------------------------------------------------------------------
: DataSet MVA Signal efficiency: from test sample (from training sample)
: Name: Method: @B=0.01 @B=0.10 @B=0.30
: -------------------------------------------------------------------------------------------------------------------
: dataset LD : 0.351 (0.426) 0.763 (0.762) 0.922 (0.925)
: dataset MLPBNN : 0.325 (0.407) 0.751 (0.760) 0.917 (0.922)
: dataset LikelihoodPCA : 0.313 (0.371) 0.751 (0.762) 0.913 (0.927)
: dataset SVM : 0.357 (0.370) 0.744 (0.752) 0.912 (0.918)
: dataset CutsD : 0.242 (0.394) 0.727 (0.788) 0.903 (0.922)
: dataset BDT : 0.256 (0.393) 0.633 (0.743) 0.863 (0.915)
: dataset RuleFit : 0.215 (0.258) 0.637 (0.692) 0.865 (0.899)
: dataset KNN : 0.186 (0.258) 0.554 (0.630) 0.819 (0.847)
: dataset PDEFoam : 0.128 (0.226) 0.512 (0.541) 0.786 (0.800)
: dataset PDERS : 0.170 (0.155) 0.463 (0.446) 0.754 (0.729)
: dataset Cuts : 0.108 (0.145) 0.446 (0.479) 0.741 (0.746)
: dataset Likelihood : 0.082 (0.085) 0.385 (0.383) 0.683 (0.661)
: dataset FDA_GA : 0.061 (0.066) 0.320 (0.311) 0.623 (0.595)
: -------------------------------------------------------------------------------------------------------------------
:
Dataset:dataset : Created tree 'TestTree' with 10000 events
:
Dataset:dataset : Created tree 'TrainTree' with 2000 events
:
Factory : [1mThank you for using TMVA![0m
: [1mFor citation information, please visit: http://tmva.sf.net/citeTMVA.html[0m
==> Wrote root file: TMVA.root
==> TMVAClassification is done!
(int) 0