89 if (
this == &rhs)
return *
this;
115 MATH_WARN_MSG(
"Fitter::SetFunction",
"Requested function does not provide gradient - use it as non-gradient function ");
141 MATH_WARN_MSG(
"Fitter::SetFunction",
"Requested function does not provide gradient - use it as non-gradient function ");
186 unsigned int npar = fcn.
NDim();
188 MATH_ERROR_MSG(
"Fitter::SetFCN",
"FCN function has zero parameters ");
213 if (!
SetFCN(static_cast<const ROOT::Math::IMultiGenFunction &>(fcn),params, dataSize, chi2fit) )
return false;
222 if (!
SetFCN(fcn,params,fcn.
NPoints(), chi2fit) )
return false;
232 if (!
SetFCN(fcn,params,fcn.
NPoints(), chi2fit) )
return false;
243 if (!
SetFCN(fcn, params,dataSize,chi2fit) )
return false;
252 if (!
SetFCN(fcn, params,dataSize, chi2fit) )
return false;
258 if (!
SetFCN(fcn, params) )
return false;
264 if (!
SetFCN(fcn, params) )
return false;
276 MATH_ERROR_MSG(
"Fitter::FitFCN",
"Fit Parameter settings have not been created ");
282 return SetFCN(newFcn,params,dataSize,chi2fit);
288 if (!
SetFCN(fcn, npar, params, dataSize, chi2fit))
return false;
300 MATH_ERROR_MSG(
"Fitter::FitFCN",
"Objective function has not been set");
317 MATH_ERROR_MSG(
"Fitter::FitFCN",
"Objective function has not been set");
323 double fcnval = (*fObjFunction)(
fResult->GetParams() );
339 MATH_ERROR_MSG(
"Fitter::DoLeastSquareFit",
"model function is not set");
344 std::cout <<
"Fitter ParamSettings " <<
Config().
ParamsSettings()[3].IsBound() <<
" lower limit " 366 MATH_INFO_MSG(
"Fitter::DoLeastSquareFit",
"use gradient from model function");
383 MATH_ERROR_MSG(
"Fitter::DoLeastSquareFit",
"wrong type of function - it does not provide gradient");
401 MATH_ERROR_MSG(
"Fitter::DoBinnedLikelihoodFit",
"model function is not set");
411 MATH_INFO_MSG(
"Fitter::DoBinnedLikelihoodFit",
"MINOS errors cannot be computed in weighted likelihood fits");
453 MATH_ERROR_MSG(
"Fitter::DoBinnedLikelihoodFit",
"wrong type of function - it does not provide gradient");
470 MATH_INFO_MSG(
"Fitter::DoLikelihoodFit",
"use gradient from model function");
474 MATH_ERROR_MSG(
"Fitter::DoBinnedLikelihoodFit",
"wrong type of function - it does not provide gradient");
481 "Not-extended binned fit with gradient not yet supported - do an extended fit");
507 MATH_ERROR_MSG(
"Fitter::DoUnbinnedLikelihoodFit",
"model function is not set");
512 MATH_INFO_MSG(
"Fitter::DoUnbinnedLikelihoodFit",
"MINOS errors cannot be computed in weighted likelihood fits");
556 MATH_INFO_MSG(
"Fitter::DoUnbinnedLikelihoodFit",
"use gradient from model function");
561 "Extended unbinned fit with gradient not yet supported - do a not-extended fit");
574 MATH_ERROR_MSG(
"Fitter::DoUnbinnedLikelihoodFit",
"wrong type of function - it does not provide gradient");
578 MATH_INFO_MSG(
"Fitter::DoUnbinnedLikelihoodFit",
"use gradient from model function");
583 "Extended unbinned fit with gradient not yet supported - do a not-extended fit");
596 MATH_ERROR_MSG(
"Fitter::DoUnbinnedLikelihoodFit",
"wrong type of function - it does not provide gradient");
624 MATH_ERROR_MSG(
"Fitter::CalculateHessErrors",
"Objective function has not been set");
633 MATH_ERROR_MSG(
"Fitter::CalculateHessErrors",
"Re-computation of Hesse errors not implemented for weighted likelihood fits");
634 MATH_INFO_MSG(
"Fitter::CalculateHessErrors",
"Do the Fit using configure option FitConfig::SetParabErrors()");
659 MATH_ERROR_MSG(
"Fitter::CalculateHessErrors",
"Error initializing the minimizer");
666 MATH_ERROR_MSG(
"Fitter::CalculateHessErrors",
"Need to do a fit before calculating the errors");
672 if (!ret)
MATH_WARN_MSG(
"Fitter::CalculateHessErrors",
"Error when calculating Hessian");
704 MATH_ERROR_MSG(
"Fitter::CalculateMinosErrors",
"Minimizer does not exist - cannot calculate Minos errors");
709 MATH_ERROR_MSG(
"Fitter::CalculateMinosErrors",
"Invalid Fit Result - cannot calculate Minos errors");
714 MATH_ERROR_MSG(
"Fitter::CalculateMinosErrors",
"Computation of MINOS errors not implemented for weighted likelihood fits");
724 unsigned int n = (ipars.size() > 0) ? ipars.size() :
fResult->Parameters().size();
726 for (
unsigned int i = 0; i <
n; ++i) {
728 unsigned int index = (ipars.size() > 0) ? ipars[i] : i;
729 bool ret =
fMinimizer->GetMinosError(index, elow, eup);
730 if (ret)
fResult->SetMinosError(index, elow, eup);
734 MATH_ERROR_MSG(
"Fitter::CalculateMinosErrors",
"Minos error calculation failed for all parameters");
743 struct ObjFuncTrait {
744 static unsigned int NCalls(
const Func & ) {
return 0; }
745 static int Type(
const Func & ) {
return -1; }
746 static bool IsGrad() {
return false; }
752 static bool IsGrad() {
return false; }
758 static bool IsGrad() {
return true; }
769 MATH_ERROR_MSG(
"Fitter::DoInitMinimizer",
"wrong function dimension or wrong size for FitConfig");
785 MATH_ERROR_MSG(
"Fitter::DoInitMinimizer",
"wrong type of function - it does not provide gradient");
828 std::cout <<
"ROOT::Fit::Fitter::DoMinimization : ncalls = " <<
fResult->fNCalls <<
" type of objfunc " << fFitFitResType <<
" typeid: " <<
typeid(*fObjFunction).name() <<
" use gradient " <<
fUseGradient << std::endl;
845 fObjFunction = std::unique_ptr<ROOT::Math::IMultiGenFunction> ( objFunc.
Clone() );
854 for (
unsigned int i = 0; i <
fConfig.
NPar(); ++i) {
867 if (fcn) ncalls = fcn->
NCalls();
871 if (fcn) ncalls = fcn->
NCalls();
886 MATH_ERROR_MSG(
"Fitter::ApplyWeightCorrection",
"Must perform first a fit before applying the correction");
890 unsigned int n = loglw2.
NDim();
892 std::vector<double> cov(n*n);
893 bool ret =
fMinimizer->GetCovMatrix(&cov[0] );
895 MATH_ERROR_MSG(
"Fitter::ApplyWeightCorrection",
"Previous fit has no valid Covariance matrix");
899 fObjFunction = std::unique_ptr<ROOT::Math::IMultiGenFunction> ( loglw2.
Clone() );
912 MATH_ERROR_MSG(
"Fitter::ApplyWeightCorrection",
"Error running Hesse on weight2 likelihood - cannot compute errors");
917 MATH_WARN_MSG(
"Fitter::ApplyWeightCorrection",
"Covariance matrix for weighted likelihood is not accurate, the errors may be not reliable");
919 MATH_WARN_MSG(
"Fitter::ApplyWeightCorrection",
"Covariance matrix for weighted likelihood was forced to be defined positive");
922 MATH_ERROR_MSG(
"Fitter::ApplyWeightCorrection",
"Covariance matrix for weighted likelihood is not valid !");
936 std::vector<double> hes(n*n);
939 MATH_ERROR_MSG(
"Fitter::ApplyWeightCorrection",
"Error retrieving Hesse on weight2 likelihood - cannot compute errors");
955 std::vector<double> tmp(n*n);
956 for (
unsigned int i = 0; i <
n; ++i) {
957 for (
unsigned int j = 0; j <
n; ++j) {
958 for (
unsigned int k = 0; k <
n; ++k)
959 tmp[i*n+j] += hes[i*n + k] * cov[k*n + j];
963 std::vector<double> newCov(n*n);
964 for (
unsigned int i = 0; i <
n; ++i) {
965 for (
unsigned int j = 0; j <
n; ++j) {
966 for (
unsigned int k = 0; k <
n; ++k)
967 newCov[i*n+j] += cov[i*n + k] * tmp[k*n + j];
972 for (
unsigned int i = 0; i <
n; ++i) {
974 for (
unsigned int j = 0; j <= i; ++j)
975 fResult->fCovMatrix[k++] = newCov[i *n + j];
void ExamineFCN()
look at the user provided FCN and get data and model function is they derive from ROOT::Fit FCN class...
Interface (abstract class) for multi-dimensional functions providing a gradient calculation.
Namespace for new ROOT classes and functions.
void(* MinuitFCN_t)(int &npar, double *gin, double &f, double *u, int flag)
fit using user provided FCN with Minuit-like interface If npar = 0 it is assumed that the parameters ...
ROOT::Math::Minimizer * CreateMinimizer()
create a new minimizer according to chosen configuration
bool CalculateMinosErrors()
perform an error analysis on the result using MINOS To be called only after fitting and when a minimi...
Fitter & operator=(const Fitter &rhs)
Assignment operator (disabled, class is not copyable)
bool EvalFCN()
Perform a simple FCN evaluation.
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
bool NormalizeErrors() const
flag to check if resulting errors are be normalized according to chi2/ndf
const std::vector< unsigned int > & MinosParams() const
return vector of parameter indeces for which the Minos Error will be computed
LogLikelihoodFCN class for likelihood fits.
void UseSumOfWeightSquare(bool on=true)
unsigned int NPar() const
number of parameters settings
std::shared_ptr< IModelFunction > fFunc
copy of the fitted function containing on output the fit result
virtual unsigned int NPoints() const
return the number of data points used in evaluating the function
virtual IBaseFunctionMultiDimTempl< T > * Clone() const =0
Clone a function.
Class describing the unbinned data sets (just x coordinates values) of any dimensions.
Interface (abstract class) for parametric gradient multi-dimensional functions providing in addition ...
bool DoLinearFit()
linear least square fit
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
void SetErrorDef(double err)
set error def
#define MATH_WARN_MSG(loc, str)
std::shared_ptr< ROOT::Fit::FitResult > fResult
copy of the fitted function containing on output the fit result
MultiDimParamFunctionAdapter class to wrap a one-dimensional parametric function in a multi dimension...
bool CalculateHessErrors()
perform an error analysis on the result using the Hessian Errors are obtaied from the inverse of the ...
const ParameterSettings & ParSettings(unsigned int i) const
get the parameter settings for the i-th parameter (const method)
bool DoBinnedLikelihoodFit(bool extended=true, const ROOT::Fit::ExecutionPolicy &executionPolicy=ROOT::Fit::ExecutionPolicy::kSerial)
binned likelihood fit
virtual BaseObjFunction::Type_t Type() const
get type of fit method function
void SetValue(double val)
set the value
void CreateParamsSettings(const ROOT::Math::IParamMultiFunctionTempl< T > &func)
set the parameter settings from a model function.
Fitter()
Default constructor.
bool UseWeightCorrection() const
Apply Weight correction for error matrix computation.
virtual BaseObjFunction::Type_t Type() const
get type of fit method function
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
int PrintLevel() const
non-static methods for retrieving options
bool DoLeastSquareFit(const ROOT::Fit::ExecutionPolicy &executionPolicy=ROOT::Fit::ExecutionPolicy::kSerial)
least square fit
virtual Type_t Type() const
return the type of method, override if needed
bool UpdateAfterFit() const
Update configuration after a fit using the FitResult.
std::shared_ptr< IModelFunction_v > fFunc_v
bool ParabErrors() const
do analysis for parabolic errors
bool ApplyWeightCorrection(const ROOT::Math::IMultiGenFunction &loglw2, bool minimizeW2L=false)
apply correction in the error matrix for the weights for likelihood fits This method can be called on...
const FitConfig & Config() const
access to the fit configuration (const method)
#define MATH_ERROR_MSG(loc, str)
void SetMinosErrors(bool on=true)
set Minos erros computation to be performed after fitting
Documentation for the abstract class IBaseFunctionMultiDim.
Chi2FCN class for binnned fits using the least square methods.
std::shared_ptr< ROOT::Fit::FitData > fData
pointer to used minimizer
#define MATH_INFO_MSG(loc, str)
void SetMinimizer(const char *type, const char *algo=0)
set minimizer type
void SetStepSize(double err)
set the step size
BasicFCN class: base class for the objective functions used in the fits It has a reference to the dat...
Fitter class, entry point for performing all type of fits.
const std::vector< ROOT::Fit::ParameterSettings > & ParamsSettings() const
get the vector of parameter settings (const method)
static double DefaultErrorDef()
bool FitFCN()
Perform a fit with the previously set FCN function.
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
void SetFunction(const IModelFunction &func, bool useGradient=false)
Set the fitted function (model function) from a parametric function interface.
std::shared_ptr< ROOT::Math::Minimizer > fMinimizer
pointer to the object containing the result of the fit
Type
enumeration specifying the integration types.
Interface (abstract class) for parametric one-dimensional gradient functions providing in addition to...
class containg the result of the fit and all the related information (fitted parameter values...
Specialized IParamFunction interface (abstract class) for one-dimensional parametric functions It is ...
FitMethodFunction class Interface for objective functions (like chi2 and likelihood used in the fit) ...
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
bool DoUnbinnedLikelihoodFit(bool extended=false, const ROOT::Fit::ExecutionPolicy &executionPolicy=ROOT::Fit::ExecutionPolicy::kSerial)
un-binned likelihood fit
const std::string & MinimizerType() const
return type of minimizer package
std::shared_ptr< ROOT::Math::IMultiGenFunction > fObjFunction
pointer to the fit data (binned or unbinned data)
bool GetDataFromFCN()
internal functions to get data set and model function from FCN useful for fits done with customized F...
virtual unsigned int NCalls() const
return the total number of function calls (overrided if needed)
bool MinosErrors() const
do minos errros analysis on the parameters
bool SetFCN(unsigned int npar, Function &fcn, const double *params=0, unsigned int dataSize=0, bool chi2fit=false)
Set a generic FCN function as a C++ callable object implementing double () (const double *) Note that...
MultiDimParamGradFunctionAdapter class to wrap a one-dimensional parametric gradient function in a mu...
void SetParamsSettings(unsigned int npar, const double *params, const double *vstep=0)
set the parameter settings from number of parameters and a vector of values and optionally step value...
double ErrorDef() const
error definition
virtual BaseObjFunction::Type_t Type() const
get type of fit method function
void UseSumOfWeightSquare(bool on=true)
bool DoMinimization(const BaseFunc &f, const ROOT::Math::IMultiGenFunction *chifunc=0)
do minimization
virtual unsigned int NDim() const =0
Retrieve the dimension of the function.