Logo ROOT   6.12/07
Reference Guide
FitResult.h
Go to the documentation of this file.
1 // @(#)root/mathcore:$Id$
2 // Author: L. Moneta Wed Aug 30 11:05:34 2006
3 
4 /**********************************************************************
5  * *
6  * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT *
7  * *
8  * *
9  **********************************************************************/
10 
11 // Header file for class FitResult
12 
13 #ifndef ROOT_Fit_FitResult
14 #define ROOT_Fit_FitResult
15 
16 #include "Math/IFunctionfwd.h"
17 #include "Math/IParamFunctionfwd.h"
18 
19 #include <vector>
20 #include <map>
21 #include <string>
22 #include <cmath>
23 #include <cassert>
24 #include <memory>
25 
26 namespace ROOT {
27 
28  namespace Math {
29  class Minimizer;
30  }
31 
32 
33  namespace Fit {
34 
35  class FitConfig;
36  class FitData;
37  class BinData;
38 
39 //___________________________________________________________________________________
40 /**
41  class containg the result of the fit and all the related information
42  (fitted parameter values, error, covariance matrix and minimizer result information)
43  Contains a pointer also to the fitted (model) function, modified with the fit parameter values.
44  When the fit is valid, it is constructed from a Minimizer and a model function pointer
45 
46  @ingroup FitMain
47 */
48 class FitResult {
49 
50 public:
51 
53 
54  /**
55  Default constructor for an empty (non valid) fit result
56  */
57  FitResult ();
58 
59  /**
60  Constructor from a fit-config for a dummy fit
61  (e.g. when only one fcn evaluation is done)
62  */
63  FitResult (const FitConfig & fconfig);
64 
65 
66  /**
67  Copy constructor.
68  */
69  FitResult(const FitResult & rhs);
70 
71  /**
72  Assignment operator
73  */
74  FitResult & operator = (const FitResult & rhs);
75 
76  /**
77  Destructor
78  */
79  virtual ~FitResult ();
80 
81 
82 public:
83 
84  /**
85  Fill the fit result from a Minimizer instance after fitting
86  Run also Minos if requested from the configuration
87  */
88  void FillResult(const std::shared_ptr<ROOT::Math::Minimizer> & min, const FitConfig & fconfig, const std::shared_ptr<IModelFunction> & f,
89  bool isValid, unsigned int sizeOfData = 0, bool binFit = true, const ROOT::Math::IMultiGenFunction * chi2func = 0, unsigned int ncalls = 0);
90 
91 
92  /**
93  Update the fit result with a new minimization status
94  To be run only if same fit is performed with same configuration
95  Note that in this case MINOS is not re-run. If one wants to run also MINOS
96  a new result must be created
97  */
98  bool Update(const std::shared_ptr<ROOT::Math::Minimizer> & min, bool isValid, unsigned int ncalls = 0 );
99 
100  /** minimization quantities **/
101 
102  /// minimizer type
103  const std::string & MinimizerType() const { return fMinimType; }
104 
105  /**
106  True if fit successful, otherwise false.
107  A fit is considered successful if the minimizer succeded in finding the
108  minimum. It could happen that subsequent operations like error analysis (e.g. Minos)
109  failed. In that case the status can be still true if the original minimization algorithm
110  succeeded in finding the minimum.
111  One can query in that case the minimizer return status using Status().
112  It is responability to the Minimizer class to tag a found minimum as valid or not
113  and to produce also a status code.
114  */
115  bool IsValid() const { return fValid; }
116 
117  /// True if a fit result does not exist (even invalid) with parameter values
118  bool IsEmpty() const { return (fParams.size() == 0); }
119 
120  /// Return value of the objective function (chi2 or likelihood) used in the fit
121  double MinFcnValue() const { return fVal; }
122 
123  ///Number of function calls to find minimum
124  unsigned int NCalls() const { return fNCalls; }
125 
126  ///Expected distance from minimum
127  double Edm() const { return fEdm; }
128 
129  /// get total number of parameters
130  unsigned int NTotalParameters() const { return fParams.size(); }
131  /// total number of parameters (abbreviation)
132  unsigned int NPar() const { return NTotalParameters(); }
133 
134  /// get total number of free parameters
135  unsigned int NFreeParameters() const { return fNFree; }
136 
137  /// minimizer status code
138  int Status() const { return fStatus; }
139 
140  ///covariance matrix status code
141  /// using Minuit convention : =0 not calculated, =1 approximated, =2 made pos def , =3 accurate
142 
143  int CovMatrixStatus() const { return fCovStatus; }
144 
145  /** fitting quantities **/
146 
147  /// Return pointer to model (fit) function with fitted parameter values.
148  /// Pointer is managed internally. I must not be deleted
149  const IModelFunction * FittedFunction() const {
150  return fFitFunc.get();
151  }
152 
153  /// return BinData used in the fit (return a nullptr in case a different fit is done
154  /// or the data are not available
155  /// Pointer is managed internally, it must not be deleted
156  const BinData * FittedBinData() const;
157 
158 
159  /// Chi2 fit value
160  /// in case of likelihood must be computed ?
161  double Chi2() const { return fChi2; }
162 
163  /// Number of degree of freedom
164  unsigned int Ndf() const { return fNdf; }
165 
166  /// p value of the fit (chi2 probability)
167  double Prob() const;
168 
169  /// parameter errors (return st::vector)
170  const std::vector<double> & Errors() const { return fErrors; }
171  /// parameter errors (return const pointer)
172  const double * GetErrors() const { return (fErrors.empty()) ? 0 : &fErrors.front(); }
173 
174  /// parameter values (return std::vector)
175  const std::vector<double> & Parameters() const { return fParams; }
176  /// parameter values (return const pointer)
177  const double * GetParams() const { return &fParams.front(); }
178 
179  /// parameter value by index
180  double Value(unsigned int i) const { return fParams[i]; }
181  /// parameter value by index
182  double Parameter(unsigned int i) const { return fParams[i]; }
183 
184  /// parameter error by index
185  // (NOTE: this due to conflict with TObject::Error cannot used in derived class which
186  // inherits from TObject. Use instead ParError (or Errors()[i] )
187  double Error(unsigned int i) const {
188  return (i < fErrors.size() ) ? fErrors[i] : 0;
189  }
190  /// parameter error by index
191  double ParError(unsigned int i) const {
192  return (i < fErrors.size() ) ? fErrors[i] : 0;
193  }
194 
195  /// name of the parameter
196  std::string ParName(unsigned int i) const;
197 
198  /// set the Minos errors for parameter i (called by the Fitter class when running Minos)
199  void SetMinosError(unsigned int i, double elow, double eup);
200 
201  /// query if parameter i has the Minos error
202  bool HasMinosError(unsigned int i) const;
203 
204  /// lower Minos error. If Minos has not run for parameter i return the parabolic error
205  double LowerError(unsigned int i) const;
206 
207  /// upper Minos error. If Minos has not run for parameter i return the parabolic error
208  double UpperError(unsigned int i) const;
209 
210  /// parameter global correlation coefficient
211  double GlobalCC(unsigned int i) const {
212  return (i < fGlobalCC.size() ) ? fGlobalCC[i] : -1;
213  }
214 
215 
216  /// retrieve covariance matrix element
217  double CovMatrix (unsigned int i, unsigned int j) const {
218  if ( i >= fErrors.size() || j >= fErrors.size() ) return 0;
219  if (fCovMatrix.size() == 0) return 0; // no matrix is available in case of non-valid fits
220  if ( j < i )
221  return fCovMatrix[j + i* (i+1) / 2];
222  else
223  return fCovMatrix[i + j* (j+1) / 2];
224  }
225 
226  /// retrieve correlation elements
227  double Correlation(unsigned int i, unsigned int j ) const {
228  if ( i >= fErrors.size() || j >= fErrors.size() ) return 0;
229  if (fCovMatrix.size() == 0) return 0; // no matrix is available in case of non-valid fits
230  double tmp = CovMatrix(i,i)*CovMatrix(j,j);
231  return ( tmp > 0) ? CovMatrix(i,j)/ std::sqrt(tmp) : 0;
232  }
233 
234  /// fill covariance matrix elements using a generic matrix class implementing operator(i,j)
235  /// the matrix must be previously allocates with right size (npar * npar)
236  template<class Matrix>
237  void GetCovarianceMatrix(Matrix & mat) const {
238  unsigned int npar = fErrors.size();
239  if (fCovMatrix.size() != npar*(npar+1)/2 ) return; // do nothing
240  for (unsigned int i = 0; i< npar; ++i) {
241  for (unsigned int j = 0; j<=i; ++j) {
242  mat(i,j) = fCovMatrix[j + i*(i+1)/2 ];
243  if (i != j) mat(j,i) = mat(i,j);
244  }
245  }
246  }
247 
248  /// fill a correlation matrix elements using a generic symmetric matrix class implementing operator(i,j)
249  /// the matrix must be previously allocates with right size (npar * npar)
250  template<class Matrix>
251  void GetCorrelationMatrix(Matrix & mat) const {
252  unsigned int npar = fErrors.size();
253  if (fCovMatrix.size() != npar*(npar+1)/2) return; // do nothing
254  for (unsigned int i = 0; i< npar; ++i) {
255  for (unsigned int j = 0; j<=i; ++j) {
256  double tmp = fCovMatrix[i * (i +3)/2 ] * fCovMatrix[ j * (j+3)/2 ];
257  mat(i,j) = (tmp > 0) ? fCovMatrix[j + i*(i+1)/2 ] / std::sqrt(tmp) : 0;
258  if (i != j) mat(j,i) = mat(i,j);
259  }
260  }
261  }
262 
263  /**
264  get confidence intervals for an array of n points x.
265  stride1 indicates the stride in the coordinate space while stride2 the stride in dimension space.
266  For 1-dim points : stride1=1, stride2=1
267  for multi-dim points arranged as (x0,x1,...,xN,y0,....yN) stride1=1 stride2=n
268  for multi-dim points arraged as (x0,y0,..,x1,y1,...,xN,yN,..) stride1=ndim, stride2=1
269 
270  the confidence interval are returned in the array ci
271  cl is the desired confidedence interval value
272  norm is a flag to control if the intervals need to be normalized to the chi2/ndf value
273  By default the intervals are corrected using the chi2/ndf value of the fit if a chi2 fit is performed
274  */
275  void GetConfidenceIntervals(unsigned int n, unsigned int stride1, unsigned int stride2, const double * x, double * ci, double cl=0.95, bool norm = true ) const;
276 
277  /**
278  evaluate confidence interval for the point specified in the passed data sets
279  the confidence interval are returned in the array ci
280  cl is the desired confidence interval value.
281  This method is mantained for backward compatibility and will be deprecated
282  */
283  void GetConfidenceIntervals(const BinData & data, double * ci, double cl=0.95, bool norm = true ) const;
284 
285  /**
286  evaluate confidence interval for the data set used in the last fit
287  the confidence interval are returned as a vector of data points
288  */
289  std::vector<double> GetConfidenceIntervals(double cl=0.95, bool norm = true ) const;
290 
291 
292  /// get index for parameter name (return -1 if not found)
293  int Index(const std::string & name) const;
294 
295 
296  ///normalize errors using chi2/ndf for chi2 fits
297  void NormalizeErrors();
298 
299  /// flag to chek if errors are normalized
300  bool NormalizedErrors() const { return fNormalized; }
301 
302  /// print the result and optionaly covariance matrix and correlations
303  void Print(std::ostream & os, bool covmat = false) const;
304 
305  ///print error matrix and correlations
306  void PrintCovMatrix(std::ostream & os) const;
307 
308  /// query if a parameter is bound
309  bool IsParameterBound(unsigned int ipar) const;
310 
311  /// query if a parameter is fixed
312  bool IsParameterFixed(unsigned int ipar) const;
313 
314  /// retrieve parameter bounds - return false if parameter is not bound
315  bool ParameterBounds(unsigned int ipar, double &lower, double &upper) const;
316 
317 
318  /// get name of parameter (deprecated)
319  std::string GetParameterName(unsigned int ipar) const {
320  return ParName(ipar);
321  }
322 
323 
324 protected:
325 
326 
327  /// Return pointer non const pointer to model (fit) function with fitted parameter values.
328  /// used by Fitter class
329  std::shared_ptr<IModelFunction> ModelFunction() { return fFitFunc; }
330  void SetModelFunction(const std::shared_ptr<IModelFunction> & func) { fFitFunc = func; }
331 
332 
333  friend class Fitter;
334 
335 
336  bool fValid; // flag for indicating valid fit
337  bool fNormalized; // flag for indicating is errors are normalized
338  unsigned int fNFree; // number of fit free parameters (total parameters are in size of parameter vector)
339  unsigned int fNdf; // number of degree of freedom
340  unsigned int fNCalls; // number of function calls
341  int fStatus; // minimizer status code
342  int fCovStatus; // covariance matrix status code
343  double fVal; // minimum function value
344  double fEdm; // expected distance from mimimum
345  double fChi2; // fit chi2 value (different than fval in case of chi2 fits)
346  std::shared_ptr<ROOT::Math::Minimizer> fMinimizer; //! minimizer object used for fitting
347  std::shared_ptr<ROOT::Math::IMultiGenFunction> fObjFunc; //! objective function used for fitting
348  std::shared_ptr<IModelFunction> fFitFunc; //! model function resulting from the fit.
349  std::shared_ptr<FitData> fFitData; //! data set used in the fit
350  std::map<unsigned int, bool> fFixedParams; // list of fixed parameters
351  std::map<unsigned int, unsigned int> fBoundParams; // list of limited parameters
352  std::vector<std::pair<double,double> > fParamBounds; // parameter bounds
353  std::vector<double> fParams; // parameter values. Size is total number of parameters
354  std::vector<double> fErrors; // errors
355  std::vector<double> fCovMatrix; // covariance matrix (size is npar*(npar+1)/2) where npar is total parameters
356  std::vector<double> fGlobalCC; // global Correlation coefficient
357  std::map<unsigned int, std::pair<double,double> > fMinosErrors; // map contains the two Minos errors
358  std::string fMinimType; // string indicating type of minimizer
359  std::vector<std::string> fParNames; // parameter names (only with FCN only fits, when fFitFunc=0)
360 
361 };
362 
363 
364  } // end namespace Fit
365 
366 } // end namespace ROOT
367 
368 
369 
370 
371 
372 #endif /* ROOT_Fit_FitResult */
std::shared_ptr< ROOT::Math::IMultiGenFunction > fObjFunc
minimizer object used for fitting
Definition: FitResult.h:347
Namespace for new ROOT classes and functions.
Definition: StringConv.hxx:21
double CovMatrix(unsigned int i, unsigned int j) const
retrieve covariance matrix element
Definition: FitResult.h:217
double Error(unsigned int i) const
parameter error by index
Definition: FitResult.h:187
const std::vector< double > & Errors() const
parameter errors (return st::vector)
Definition: FitResult.h:170
double Edm() const
Expected distance from minimum.
Definition: FitResult.h:127
unsigned int NPar() const
total number of parameters (abbreviation)
Definition: FitResult.h:132
double Value(unsigned int i) const
parameter value by index
Definition: FitResult.h:180
unsigned int Ndf() const
Number of degree of freedom.
Definition: FitResult.h:164
double Parameter(unsigned int i) const
parameter value by index
Definition: FitResult.h:182
double MinFcnValue() const
Return value of the objective function (chi2 or likelihood) used in the fit.
Definition: FitResult.h:121
const IModelFunction * FittedFunction() const
fitting quantities
Definition: FitResult.h:149
void SetModelFunction(const std::shared_ptr< IModelFunction > &func)
Definition: FitResult.h:330
unsigned int NTotalParameters() const
get total number of parameters
Definition: FitResult.h:130
Double_t Prob(Double_t chi2, Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2) and number of degrees of freedom (ndf...
Definition: TMath.cxx:624
bool GetConfidenceIntervals(const TH1 *h1, const ROOT::Fit::FitResult &r, TGraphErrors *gr, double cl=0.95)
compute confidence intervals at level cl for a fitted histogram h1 in a TGraphErrors gr ...
std::map< unsigned int, bool > fFixedParams
data set used in the fit
Definition: FitResult.h:350
unsigned int fNCalls
Definition: FitResult.h:340
std::vector< double > fErrors
Definition: FitResult.h:354
unsigned int fNdf
Definition: FitResult.h:339
double sqrt(double)
unsigned int NCalls() const
Number of function calls to find minimum.
Definition: FitResult.h:124
Double_t x[n]
Definition: legend1.C:17
std::shared_ptr< FitData > fFitData
model function resulting from the fit.
Definition: FitResult.h:349
std::string GetParameterName(unsigned int ipar) const
get name of parameter (deprecated)
Definition: FitResult.h:319
bool NormalizedErrors() const
flag to chek if errors are normalized
Definition: FitResult.h:300
std::shared_ptr< ROOT::Math::Minimizer > fMinimizer
Definition: FitResult.h:346
Documentation for the abstract class IBaseFunctionMultiDim.
Definition: IFunction.h:62
std::shared_ptr< IModelFunction > ModelFunction()
Return pointer non const pointer to model (fit) function with fitted parameter values.
Definition: FitResult.h:329
std::shared_ptr< IModelFunction > fFitFunc
objective function used for fitting
Definition: FitResult.h:348
double Correlation(unsigned int i, unsigned int j) const
retrieve correlation elements
Definition: FitResult.h:227
std::map< unsigned int, std::pair< double, double > > fMinosErrors
Definition: FitResult.h:357
unsigned int NFreeParameters() const
get total number of free parameters
Definition: FitResult.h:135
RooCmdArg Minimizer(const char *type, const char *alg=0)
Fitter class, entry point for performing all type of fits.
Definition: Fitter.h:77
const double * GetParams() const
parameter values (return const pointer)
Definition: FitResult.h:177
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
Definition: BinData.h:53
int Status() const
minimizer status code
Definition: FitResult.h:138
int CovMatrixStatus() const
covariance matrix status code using Minuit convention : =0 not calculated, =1 approximated, =2 made pos def , =3 accurate
Definition: FitResult.h:143
RooCmdArg Index(RooCategory &icat)
const std::string & MinimizerType() const
minimization quantities
Definition: FitResult.h:103
unsigned int fNFree
Definition: FitResult.h:338
class containg the result of the fit and all the related information (fitted parameter values...
Definition: FitResult.h:48
void GetCovarianceMatrix(Matrix &mat) const
fill covariance matrix elements using a generic matrix class implementing operator(i,j) the matrix must be previously allocates with right size (npar * npar)
Definition: FitResult.h:237
void Print(std::ostream &os, const OptionType &opt)
bool IsValid() const
True if fit successful, otherwise false.
Definition: FitResult.h:115
std::string fMinimType
Definition: FitResult.h:358
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
Definition: HFitImpl.cxx:134
const std::vector< double > & Parameters() const
parameter values (return std::vector)
Definition: FitResult.h:175
Namespace for new Math classes and functions.
std::vector< std::pair< double, double > > fParamBounds
Definition: FitResult.h:352
Binding & operator=(OUT(*fun)(void))
bool IsEmpty() const
True if a fit result does not exist (even invalid) with parameter values.
Definition: FitResult.h:118
void GetCorrelationMatrix(Matrix &mat) const
fill a correlation matrix elements using a generic symmetric matrix class implementing operator(i...
Definition: FitResult.h:251
std::vector< std::string > fParNames
Definition: FitResult.h:359
std::vector< double > fGlobalCC
Definition: FitResult.h:356
std::vector< double > fCovMatrix
Definition: FitResult.h:355
ROOT::Math::IParamMultiFunction IModelFunction
Definition: FitResult.h:52
std::map< unsigned int, unsigned int > fBoundParams
Definition: FitResult.h:351
std::vector< double > fParams
Definition: FitResult.h:353
double GlobalCC(unsigned int i) const
parameter global correlation coefficient
Definition: FitResult.h:211
const Int_t n
Definition: legend1.C:16
double Chi2() const
Chi2 fit value in case of likelihood must be computed ?
Definition: FitResult.h:161
char name[80]
Definition: TGX11.cxx:109
double ParError(unsigned int i) const
parameter error by index
Definition: FitResult.h:191
Class describing the configuration of the fit, options and parameter settings using the ROOT::Fit::Pa...
Definition: FitConfig.h:46
const double * GetErrors() const
parameter errors (return const pointer)
Definition: FitResult.h:172