105 PrintMessage( kWARNING ,
"No activation equation specified." );
139 if (synapse ==
NULL)
break;
197 if (links ==
NULL)
return;
201 for (
Int_t i=0; i<numLinks; i++) {
203 if (synapse !=
NULL)
delete synapse;
215 PrintMessage( kWARNING,
"Warning! Setting an error on a non-output neuron is probably not what you want to do." );
232 if (synapse ==
NULL)
break;
251 if (synapse ==
NULL)
break;
273 if (synapse ==
NULL)
break;
294 if (synapse ==
NULL)
break;
306 Log() << kDEBUG <<
"\t\t\t<none>" <<
Endl;
313 for (
Int_t i = 0; i < numLinks; i++) {
316 "\t\t\tweighta: " << synapse->
GetWeight()
330 else Log() << kDEBUG <<
"<none>" <<
Endl;
338 Log() << type << message <<
Endl;
345 TTHREAD_TLS_DECL_ARG2(
MsgLogger,logger,
"TNeuron",kDEBUG);
MsgLogger & Endl(MsgLogger &ml)
virtual TString GetExpression()=0
Synapse class used by TMVA artificial neural network methods.
Bool_t IsOutputNeuron() const
void PrintActivationEqn()
print activation equation, for debugging
Bool_t IsInputNeuron() const
void ForceValue(Double_t value)
force the value, typically for input and bias neurons
Iterator of object array.
void DeletePreLinks()
delete all pre-links
void PrintLinks(TObjArray *links) const
print an array of TSynapses, for debugging
void UpdateSynapsesSequential()
update the pre-synapses for each neuron (input neuron has no pre-synapse) this method should only be ...
virtual Double_t Eval(Double_t arg)=0
TObject * At(Int_t idx) const
void SetInputCalculator(TNeuronInput *calculator)
set input calculator
virtual ~TNeuron()
destructor
void InitNeuron()
initialize the neuron, most variables still need to be set via setters
void CalculateDelta()
calculate error field
Neuron class used by TMVA artificial neural network methods.
TObject * Next()
Return next object in array. Returns 0 when no more objects in array.
void AddPostLink(TSynapse *post)
add synapse as a post-link to this neuron
static const Int_t UNINITIALIZED
void AdjustSynapseWeights()
adjust the pre-synapses' weights for each neuron (input neuron has no pre-synapse) this method should...
void CalculateActivationValue()
calculate neuron activation/output
void AdjustWeight()
adjust the weight based on the error field all ready calculated by CalculateDelta ...
Double_t GetWeightedDelta()
get error field of post-neuron weighted by synapse weight
void UpdateSynapsesBatch()
update and adjust the pre-synapses for each neuron (input neuron has no pre-synapse) this method shou...
Double_t fActivationValue
void AddPreLink(TSynapse *pre)
add synapse as a pre-link to this neuron
Int_t GetEntriesFast() const
TActivation * fActivation
void InitSynapseDeltas()
initialize the error fields of all pre-neurons this method should only be called in batch mode ...
Double_t GetValue() const
void CalculateValue()
calculate neuron input
void PrintMessage(EMsgType, TString message)
print message, for debugging
Double_t GetLearningRate()
ostringstream derivative to redirect and format output
Abstract ClassifierFactory template that handles arbitrary types.
void CalculateDelta()
calculate/adjust the error field for this synapse
void DeleteLinksArray(TObjArray *&links)
delete an array of TSynapses
void SetError(Double_t error)
set error, this should only be done for an output neuron
Interface for TNeuron activation function classes.
Double_t GetWeightedValue()
get output of pre-neuron weighted by synapse weight
virtual Double_t EvalDerivative(Double_t arg)=0
TNeuronInput * fInputCalculator
void SetActivationEqn(TActivation *activation)
set activation equation