33 template <
typename Architecture>
35 ->
typename Architecture::Scalar_t
37 using Matrix_t =
typename Architecture::Matrix_t;
38 using Scalar_t =
typename Architecture::Scalar_t;
41 for (
size_t i = 0; i < ntests; i++) {
42 size_t m = rand() % 100 + 1;
43 size_t n = rand() % 100 + 1;
58 auto squaredSum = [](Scalar_t
x, Scalar_t
y){
return x + y *
y;};
59 Scalar_t mseReference =
reduceMean(squaredSum, 0.0, Z);
62 if (mseReference != 0.0)
63 error =
std::fabs((mse - mseReference) / mseReference);
66 maximumError = std::max(error, maximumError);
72 template <
typename Architecture>
74 ->
typename Architecture::Scalar_t
76 using Matrix_t =
typename Architecture::Matrix_t;
77 using Scalar_t =
typename Architecture::Scalar_t;
80 for (
size_t i = 0; i < ntests; i++) {
81 size_t m = rand() % 100 + 1;
82 size_t n = rand() % 100 + 1;
97 auto normedDifference = [
m,
n](Scalar_t
x, Scalar_t
y) {
98 return 2.0 * (
y -
x) / (m * n);
103 maximumError = std::max(error, maximumError);
113 template <
typename Architecture>
115 ->
typename Architecture::Scalar_t
117 using Matrix_t =
typename Architecture::Matrix_t;
118 using Scalar_t =
typename Architecture::Scalar_t;
121 for (
size_t i = 0; i < ntests; i++) {
122 size_t m = rand() % 100 + 1;
123 size_t n = rand() % 100 + 1;
138 auto crossCorrelation = [](Scalar_t
x, Scalar_t
y) {
139 Scalar_t sig = 1.0 / (1.0 +
std::exp(-x));
143 auto sum = [](Scalar_t
x, Scalar_t
y) {
return x +
y;};
147 if (ceReference != 0.0)
148 error =
std::fabs((ce - ceReference) / ceReference);
151 maximumError = std::max(error, maximumError);
157 template <
typename Architecture>
159 ->
typename Architecture::Scalar_t
161 using Matrix_t =
typename Architecture::Matrix_t;
162 using Scalar_t =
typename Architecture::Scalar_t;
165 for (
size_t i = 0; i < ntests; i++) {
182 auto crossCorrelationGradient = [
m,
n](Scalar_t
x, Scalar_t
y) {
183 Scalar_t sig = 1.0 / (1.0 +
std::exp(-x));
184 Scalar_t
norm = 1.0 / ((Scalar_t) m * n);
185 return (sig -
y) *
norm;};
190 maximumError = std::max(error, maximumError);
200 template <
typename Architecture>
202 ->
typename Architecture::Scalar_t
204 using Matrix_t =
typename Architecture::Matrix_t;
205 using Scalar_t =
typename Architecture::Scalar_t;
208 for (
size_t i = 0; i < ntests; i++) {
209 size_t m = rand() % 100 + 1;
210 size_t n = rand() % 100 + 1;
225 Scalar_t ceReference = 0.0;
226 for (
size_t j = 0; j <
m; j++) {
228 for (
size_t k = 0; k <
n; k++) {
231 for (
size_t k = 0; k <
n; k++) {
232 ceReference -=
Y(j,k) *
log(
exp(
X(j,k)) / sum);
235 ceReference /= (Scalar_t) m;
238 if (ceReference != 0.0)
239 error =
std::fabs((ce - ceReference) / ceReference);
242 maximumError = std::max(error, maximumError);
248 template <
typename Architecture>
250 ->
typename Architecture::Scalar_t
252 using Matrix_t =
typename Architecture::Matrix_t;
253 using Scalar_t =
typename Architecture::Scalar_t;
256 for (
size_t i = 0; i < ntests; i++) {
274 for (
size_t j = 0; j <
m; j++) {
277 for (
size_t k = 0; k <
n; k++) {
281 for (
size_t k = 0; k <
n; k++) {
282 Scalar_t sig =
exp(
X(j,k)) /
sum;
283 ZRef(j,k) = (sig * sumY -
Y(j,k)) / ((Scalar_t)
m);
289 maximumError = std::max(error, maximumError);
auto maximumRelativeError(const Matrix1 &X, const Matrix2 &Y) -> decltype(X(0, 0))
Compute the maximum, element-wise relative error of the matrices X and Y normalized by the element of...
auto testSoftmaxCrossEntropy(size_t ntests) -> typename Architecture::Scalar_t
static long int sum(long int i)
void randomMatrix(AMatrix &X)
Fill matrix with random, Gaussian-distributed values.
auto testCrossEntropy(size_t ntests) -> typename Architecture::Scalar_t
AFloat reduceMean(F f, AFloat start, const AMatrix &X)
Apply function to matrix element-wise and compute the mean of the resulting element values...
auto testMeanSquaredError(size_t ntests) -> typename Architecture::Scalar_t
void zipWithMatrix(AMatrix &Z, F f, const AMatrix &X, const AMatrix &Y)
Combine elements of two given matrices into a single matrix using the given function f...
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
auto testCrossEntropyGradients(size_t ntests) -> typename Architecture::Scalar_t
auto testMeanSquaredErrorGradients(size_t ntests) -> typename Architecture::Scalar_t
double norm(double *x, double *p)
auto testSoftmaxCrossEntropyGradients(size_t ntests) -> typename Architecture::Scalar_t