Loading [MathJax]/extensions/tex2jax.js
Logo ROOT   6.10/09
Reference Guide
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
TestLossFunctions.h
Go to the documentation of this file.
1 // @(#)root/tmva $Id$
2 // Author: Simon Pfreundschuh
3 
4 /*************************************************************************
5  * Copyright (C) 2016, Simon Pfreundschuh *
6  * All rights reserved. *
7  * *
8  * For the licensing terms see $ROOTSYS/LICENSE. *
9  * For the list of contributors see $ROOTSYS/README/CREDITS. *
10  *************************************************************************/
11 
12 //////////////////////////////////////////////////////////////////////
13 // Generic tests of the loss functions //
14 // //
15 // Contains generic test for architecture-specific implementations //
16 // of the loss functions. Requires the architecture-specific matrix //
17 // type to be constructible and convertible from/to the //
18 // TMatrixT<Double_t> type. //
19 //////////////////////////////////////////////////////////////////////
20 
22 #include "TMVA/DNN/Functions.h"
23 #include "TMVA/DNN/Net.h"
24 #include "Utility.h"
25 
26 using namespace TMVA::DNN;
27 
28 //______________________________________________________________________________
29 //
30 // Mean Squared Error
31 //______________________________________________________________________________
32 
33 template <typename Architecture>
34 auto testMeanSquaredError(size_t ntests)
35 -> typename Architecture::Scalar_t
36 {
37  using Matrix_t = typename Architecture::Matrix_t;
38  using Scalar_t = typename Architecture::Scalar_t;
39  Double_t maximumError = 0.0;
40 
41  for (size_t i = 0; i < ntests; i++) {
42  size_t m = rand() % 100 + 1;
43  size_t n = rand() % 100 + 1;
44 
45  TMatrixT<Double_t> X(m, n);
46  TMatrixT<Double_t> Y(m, n);
47  TMatrixT<Double_t> Z(m, n);
48 
49  randomMatrix(X);
50  randomMatrix(Y);
51 
52  Matrix_t XArch(X);
53  Matrix_t YArch(Y);
54 
55  Scalar_t mse = evaluate<Architecture>(ELossFunction::kMeanSquaredError,
56  YArch, XArch);
57  zipWithMatrix(Z, [](Scalar_t x, Scalar_t y){return x - y;}, X, Y);
58  auto squaredSum = [](Scalar_t x, Scalar_t y){return x + y * y;};
59  Scalar_t mseReference = reduceMean(squaredSum, 0.0, Z);
60 
61  Double_t error;
62  if (mseReference != 0.0)
63  error = std::fabs((mse - mseReference) / mseReference);
64  else
65  error = std::fabs(mse - mseReference);
66  maximumError = std::max(error, maximumError);
67  }
68  return maximumError;
69 }
70 
71 //______________________________________________________________________________
72 template <typename Architecture>
73 auto testMeanSquaredErrorGradients(size_t ntests)
74 -> typename Architecture::Scalar_t
75 {
76  using Matrix_t = typename Architecture::Matrix_t;
77  using Scalar_t = typename Architecture::Scalar_t;
78  Double_t maximumError = 0.0;
79 
80  for (size_t i = 0; i < ntests; i++) {
81  size_t m = rand() % 100 + 1;
82  size_t n = rand() % 100 + 1;
83 
84  TMatrixT<Double_t> X(m, n);
85  TMatrixT<Double_t> Y(m, n);
86  TMatrixT<Double_t> ZRef(m, n);
87 
88  randomMatrix(X);
89  randomMatrix(Y);
90 
91  Matrix_t XArch(X);
92  Matrix_t YArch(Y);
93  Matrix_t ZArch(Y);
94 
95  evaluateGradients<Architecture>(ZArch, ELossFunction::kMeanSquaredError,
96  XArch, YArch);
97  auto normedDifference = [m, n](Scalar_t x, Scalar_t y) {
98  return 2.0 * (y - x) / (m * n);
99  };
100  zipWithMatrix(ZRef, normedDifference, X, Y);
101  TMatrixT<Double_t> Z(ZArch);
102  Double_t error = maximumRelativeError(Z, ZRef);
103  maximumError = std::max(error, maximumError);
104  }
105  return maximumError;
106 }
107 
108 //______________________________________________________________________________
109 //
110 // Cross Entropy
111 //______________________________________________________________________________
112 
113 template <typename Architecture>
114 auto testCrossEntropy(size_t ntests)
115 -> typename Architecture::Scalar_t
116 {
117  using Matrix_t = typename Architecture::Matrix_t;
118  using Scalar_t = typename Architecture::Scalar_t;
119  Double_t maximumError = 0.0;
120 
121  for (size_t i = 0; i < ntests; i++) {
122  size_t m = rand() % 100 + 1;
123  size_t n = rand() % 100 + 1;
124 
125  TMatrixT<Double_t> X(m, n);
126  TMatrixT<Double_t> Y(m, n);
127  TMatrixT<Double_t> Z(m, n);
128 
129  randomMatrix(X);
130  randomMatrix(Y);
131 
132  Matrix_t XArch(X);
133  Matrix_t YArch(Y);
134 
135  Scalar_t ce = evaluate<Architecture>(ELossFunction::kCrossEntropy,
136  YArch, XArch);
137 
138  auto crossCorrelation = [](Scalar_t x, Scalar_t y) {
139  Scalar_t sig = 1.0 / (1.0 + std::exp(-x));
140  return y * std::log(sig) + (1 - y) * std::log(1 - sig);
141  };
142  zipWithMatrix(Z, crossCorrelation, X, Y);
143  auto sum = [](Scalar_t x, Scalar_t y) {return x + y;};
144  Scalar_t ceReference = - reduceMean(sum, 0.0, Z);
145 
146  Double_t error;
147  if (ceReference != 0.0)
148  error = std::fabs((ce - ceReference) / ceReference);
149  else
150  error = std::fabs(ce - ceReference);
151  maximumError = std::max(error, maximumError);
152  }
153  return maximumError;
154 }
155 
156 //______________________________________________________________________________
157 template <typename Architecture>
158 auto testCrossEntropyGradients(size_t ntests)
159 -> typename Architecture::Scalar_t
160 {
161  using Matrix_t = typename Architecture::Matrix_t;
162  using Scalar_t = typename Architecture::Scalar_t;
163  Double_t maximumError = 0.0;
164 
165  for (size_t i = 0; i < ntests; i++) {
166  size_t m = 8; //rand() % 100 + 1;
167  size_t n = 8; //rand() % 100 + 1;
168 
169  TMatrixT<Double_t> X(m, n);
170  TMatrixT<Double_t> Y(m, n);
171  TMatrixT<Double_t> ZRef(m, n);
172 
173  randomMatrix(X);
174  randomMatrix(Y);
175 
176  Matrix_t XArch(X);
177  Matrix_t YArch(Y);
178  Matrix_t ZArch(Y);
179 
180  evaluateGradients<Architecture>(ZArch, ELossFunction::kCrossEntropy,
181  YArch, XArch);
182  auto crossCorrelationGradient = [m, n](Scalar_t x, Scalar_t y) {
183  Scalar_t sig = 1.0 / (1.0 + std::exp(-x));
184  Scalar_t norm = 1.0 / ((Scalar_t) m * n);
185  return (sig - y) * norm;};
186  zipWithMatrix(ZRef, crossCorrelationGradient, X, Y);
187 
188  TMatrixT<Double_t> Z(ZArch);
189  Double_t error = maximumRelativeError(Z, ZRef);
190  maximumError = std::max(error, maximumError);
191  }
192  return maximumError;
193 }
194 
195 //______________________________________________________________________________
196 //
197 // Softmax Cross Entropy
198 //______________________________________________________________________________
199 
200 template <typename Architecture>
201 auto testSoftmaxCrossEntropy(size_t ntests)
202 -> typename Architecture::Scalar_t
203 {
204  using Matrix_t = typename Architecture::Matrix_t;
205  using Scalar_t = typename Architecture::Scalar_t;
206  Double_t maximumError = 0.0;
207 
208  for (size_t i = 0; i < ntests; i++) {
209  size_t m = rand() % 100 + 1;
210  size_t n = rand() % 100 + 1;
211 
212  TMatrixT<Double_t> X(m, n);
213  TMatrixT<Double_t> Y(m, n);
214  TMatrixT<Double_t> Z(m, n);
215 
216  randomMatrix(X);
217  randomMatrix(Y);
218 
219  Matrix_t XArch(X);
220  Matrix_t YArch(Y);
221 
222  Scalar_t ce = evaluate<Architecture>(ELossFunction::kSoftmaxCrossEntropy,
223  YArch, XArch);
224 
225  Scalar_t ceReference = 0.0;
226  for (size_t j = 0; j < m; j++) {
227  Scalar_t sum = 0.0;
228  for (size_t k = 0; k < n; k++) {
229  sum += exp(X(j,k));
230  }
231  for (size_t k = 0; k < n; k++) {
232  ceReference -= Y(j,k) * log(exp(X(j,k)) / sum);
233  }
234  }
235  ceReference /= (Scalar_t) m;
236 
237  Double_t error;
238  if (ceReference != 0.0)
239  error = std::fabs((ce - ceReference) / ceReference);
240  else
241  error = std::fabs(ce - ceReference);
242  maximumError = std::max(error, maximumError);
243  }
244  return maximumError;
245 }
246 
247 //______________________________________________________________________________
248 template <typename Architecture>
250 -> typename Architecture::Scalar_t
251 {
252  using Matrix_t = typename Architecture::Matrix_t;
253  using Scalar_t = typename Architecture::Scalar_t;
254  Double_t maximumError = 0.0;
255 
256  for (size_t i = 0; i < ntests; i++) {
257  size_t m = 8; //rand() % 100 + 1;
258  size_t n = 8; //rand() % 100 + 1;
259 
260  TMatrixT<Double_t> X(m, n);
261  TMatrixT<Double_t> Y(m, n);
262  TMatrixT<Double_t> ZRef(m, n);
263 
264  randomMatrix(X);
265  randomMatrix(Y);
266 
267  Matrix_t XArch(X);
268  Matrix_t YArch(Y);
269  Matrix_t ZArch(Y);
270 
271  evaluateGradients<Architecture>(ZArch, ELossFunction::kSoftmaxCrossEntropy,
272  YArch, XArch);
273 
274  for (size_t j = 0; j < m; j++) {
275  Scalar_t sum = 0.0;
276  Scalar_t sumY = 0.0;
277  for (size_t k = 0; k < n; k++) {
278  sum += exp(X(j,k));
279  sumY += Y(j,k);
280  }
281  for (size_t k = 0; k < n; k++) {
282  Scalar_t sig = exp(X(j,k)) / sum;
283  ZRef(j,k) = (sig * sumY - Y(j,k)) / ((Scalar_t) m);
284  }
285  }
286 
287  TMatrixT<Double_t> Z(ZArch);
288  Double_t error = maximumRelativeError(Z, ZRef);
289  maximumError = std::max(error, maximumError);
290  }
291  return maximumError;
292 }
auto maximumRelativeError(const Matrix1 &X, const Matrix2 &Y) -> decltype(X(0, 0))
Compute the maximum, element-wise relative error of the matrices X and Y normalized by the element of...
Definition: Utility.h:200
auto testSoftmaxCrossEntropy(size_t ntests) -> typename Architecture::Scalar_t
static long int sum(long int i)
Definition: Factory.cxx:2162
void randomMatrix(AMatrix &X)
Fill matrix with random, Gaussian-distributed values.
Definition: Utility.h:60
auto testCrossEntropy(size_t ntests) -> typename Architecture::Scalar_t
Definition: Blas.h:58
AFloat reduceMean(F f, AFloat start, const AMatrix &X)
Apply function to matrix element-wise and compute the mean of the resulting element values...
Definition: Utility.h:160
Double_t x[n]
Definition: legend1.C:17
auto testMeanSquaredError(size_t ntests) -> typename Architecture::Scalar_t
void zipWithMatrix(AMatrix &Z, F f, const AMatrix &X, const AMatrix &Y)
Combine elements of two given matrices into a single matrix using the given function f...
Definition: Utility.h:121
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
TMarker * m
Definition: textangle.C:8
auto testCrossEntropyGradients(size_t ntests) -> typename Architecture::Scalar_t
auto testMeanSquaredErrorGradients(size_t ntests) -> typename Architecture::Scalar_t
double Double_t
Definition: RtypesCore.h:55
Double_t y[n]
Definition: legend1.C:17
double exp(double)
double norm(double *x, double *p)
Definition: unuranDistr.cxx:40
auto testSoftmaxCrossEntropyGradients(size_t ntests) -> typename Architecture::Scalar_t
const Int_t n
Definition: legend1.C:16
double log(double)