Logo ROOT   6.10/09
Reference Guide
Namespaces | Functions
Utility.h File Reference
#include <cassert>
#include <iostream>
#include <sstream>
#include <type_traits>
#include "stdlib.h"
#include "TRandom.h"
#include "TMVA/DNN/Architectures/Reference.h"
#include "TMVA/DNN/Functions.h"
#include "TMVA/DNN/Net.h"
Include dependency graph for Utility.h:
This graph shows which files directly or indirectly include this file:

Namespaces

 TMVA
 Abstract ClassifierFactory template that handles arbitrary types.
 
 TMVA::DNN
 

Functions

template<typename AMatrix , typename F >
void TMVA::DNN::applyMatrix (AMatrix &X, F f)
 Apply functional to each element in the matrix. More...
 
template<typename AArchitecture >
void TMVA::DNN::constructRandomLinearNet (TNet< AArchitecture > &net)
 Construct a random linear neural network with up to five layers. More...
 
template<typename AMatrix >
void TMVA::DNN::copyMatrix (AMatrix &X, const AMatrix &Y)
 Generate a random batch as input for a neural net. More...
 
template<typename F , typename AFloat >
AFloat TMVA::DNN::finiteDifference (F f, AFloat dx)
 Numerically compute the derivative of the functional f using finite differences. More...
 
template<typename AMatrix >
void TMVA::DNN::identityMatrix (AMatrix &X)
 Set matrix to the identity matrix. More...
 
template<typename Matrix1 , typename Matrix2 >
auto TMVA::DNN::maximumRelativeError (const Matrix1 &X, const Matrix2 &Y) -> decltype(X(0, 0))
 Compute the maximum, element-wise relative error of the matrices X and Y normalized by the element of Y. More...
 
template<typename AFloat >
std::string TMVA::DNN::print_error (AFloat &e)
 Color code error. More...
 
template<typename AMatrix >
void TMVA::DNN::randomBatch (AMatrix &X)
 Generate a random batch as input for a neural net. More...
 
template<typename AMatrix >
void TMVA::DNN::randomMatrix (AMatrix &X)
 Fill matrix with random, Gaussian-distributed values. More...
 
template<typename AMatrix , typename AFloat , typename F >
AFloat TMVA::DNN::reduce (F f, AFloat start, const AMatrix &X)
 Generate a random batch as input for a neural net. More...
 
template<typename AMatrix , typename AFloat , typename F >
AFloat TMVA::DNN::reduceMean (F f, AFloat start, const AMatrix &X)
 Apply function to matrix element-wise and compute the mean of the resulting element values. More...
 
template<typename T >
TMVA::DNN::relativeError (const T &x, const T &y)
 Compute the relative error of x and y. More...
 
template<typename AMatrix , typename F >
void TMVA::DNN::zipWithMatrix (AMatrix &Z, F f, const AMatrix &X, const AMatrix &Y)
 Combine elements of two given matrices into a single matrix using the given function f. More...