35 #ifndef ROOT_TMVA_MethodPDEFoam 36 #define ROOT_TMVA_MethodPDEFoam 77 const TString& theOption =
"PDEFoam");
118 virtual void Reset();
173 template<
typename T>
T Sqr(
T x)
const {
return x*
x; }
215 #endif // MethodPDEFoam_H void Train(void)
Train PDE-Foam depending on the set options.
std::vector< Float_t > fXmax
The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase spa...
TString fTargetSelectionStr
virtual void Reset()
reset MethodPDEFoam:
Bool_t fFillFoamWithOrigWeights
This class is the abstract kernel interface for PDEFoam.
UInt_t KernelToUInt(EKernel ker) const
void GetNCuts(PDEFoamCell *cell, std::vector< UInt_t > &nCuts)
Fill in 'nCuts' the number of cuts made in every foam dimension, starting at the root cell 'cell'...
PDEFoam * InitFoam(TString, EFoamType, UInt_t cls=0)
Create a new PDEFoam, set the PDEFoam options (nCells, nBin, Xmin, Xmax, etc.) and initialize the PDE...
void PrintCoefficients(void)
Bool_t fMultiTargetRegression
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format...
Virtual base Class for all MVA method.
Ranking for variables in method (implementation)
void TrainUnifiedClassification(void)
Create only one unified foam (fFoam[0]) whose cells contain the average discriminator (N_sig)/(N_sig ...
void FillVariableNamesToFoam() const
store the variable names in all foams
void GetHelpMessage() const
provide help message
#define ClassDef(name, id)
void ReadWeightsFromStream(std::istream &i)
read options and internal parameters
virtual ~MethodPDEFoam(void)
destructor
void DeclareOptions()
Declare MethodPDEFoam options.
Class that contains all the data information.
std::vector< Float_t > fXmin
void SetXminXmax(TMVA::PDEFoam *)
Set Xmin, Xmax for every dimension in the given pdefoam object.
PDEFoam * ReadClonedFoamFromFile(TFile *, const TString &)
Reads a foam with name 'foamname' from file, and returns a clone of the foam.
Implementation of PDEFoam.
void AddWeightsXMLTo(void *parent) const
create XML output of PDEFoam method variables
Double_t CalculateMVAError()
Calculate the error on the Mva value.
void Init(void)
default initialization called by all constructors
void CalcXminXmax()
Determine foam range [fXmin, fXmax] for all dimensions, such that a fraction of 'fFrac' events lie ou...
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
PDEFoam can handle classification with multiple classes and regression with one or more regression-ta...
MethodPDEFoam(const TString &jobName, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="PDEFoam")
init PDEFoam objects
PDEFoamKernelBase * fKernelEstimator
EKernel UIntToKernel(UInt_t iker)
convert UInt_t to EKernel (used for reading weight files)
ETargetSelection UIntToTargetSelection(UInt_t its)
convert UInt_t to ETargetSelection (used for reading weight files)
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
Return Mva-Value.
void TrainMultiTargetRegression(void)
Training one (multi target regression) foam, whose cells contain the average event density...
UInt_t TargetSelectionToUInt(ETargetSelection ts) const
void MakeClassSpecific(std::ostream &, const TString &) const
write PDEFoam-specific classifier response NOT IMPLEMENTED YET!
void TrainSeparatedClassification(void)
Creation of 2 separated foams: one for signal events, one for background events.
void WriteFoamsToFile() const
Write PDEFoams to file.
void ReadWeightsFromXML(void *wghtnode)
read PDEFoam variables from xml weight file
void TrainMultiClassification()
Create one unified foam (see TrainUnifiedClassification()) for each class, where the cells of foam i ...
std::vector< PDEFoam * > fFoam
PDEFoamKernelBase * CreatePDEFoamKernel()
create a pdefoam kernel estimator, depending on the current value of fKernel
void TrainMonoTargetRegression(void)
Training one (mono target regression) foam, whose cells contain the average 0th target.
const std::vector< Float_t > & GetMulticlassValues()
Get the multiclass MVA response for the PDEFoam classifier.
const Ranking * CreateRanking()
Compute ranking of input variables from the number of cuts made in each PDEFoam dimension.
Abstract ClassifierFactory template that handles arbitrary types.
void DeleteFoams()
Deletes all trained foams.
ETargetSelection fTargetSelection
EDTSeparation fDTSeparation
virtual const std::vector< Float_t > & GetRegressionValues()
Return regression values for both multi- and mono-target regression.
void ProcessOptions()
process user options
virtual void ReadWeightsFromStream(std::istream &)=0
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility
void ReadFoamsFromFile()
read foams from file