Logo ROOT   6.10/09
Reference Guide
MethodANNBase.h
Go to the documentation of this file.
1 // @(#)root/tmva $Id$
2 // Author: Andreas Hoecker, Peter Speckmayer, Matt Jachowski, Jan Therhaag
3 
4 /**********************************************************************************
5  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6  * Package: TMVA *
7  * Class : MethodANNBase *
8  * Web : http://tmva.sourceforge.net *
9  * *
10  * Description: *
11  * Artificial neural network base class for the discrimination of signal *
12  * from background. *
13  * *
14  * Authors (alphabetical): *
15  * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
16  * Matt Jachowski <jachowski@stanford.edu> - Stanford University, USA *
17  * Peter Speckmayer <Peter.Speckmayer@cern.ch> - CERN, Switzerland *
18  * Joerg Stelzer <Joerg.Stelzer@cern.ch> - CERN, Switzerland *
19  * Jan Therhaag <Jan.Therhaag@cern.ch> - U of Bonn, Germany *
20  * *
21  * Small changes (regression): *
22  * Krzysztof Danielowski <danielow@cern.ch> - IFJ PAN & AGH, Poland *
23  * Kamil Kraszewski <kalq@cern.ch> - IFJ PAN & UJ , Poland *
24  * Maciej Kruk <mkruk@cern.ch> - IFJ PAN & AGH, Poland *
25  * *
26  * Copyright (c) 2005-2011: *
27  * CERN, Switzerland *
28  * *
29  * Redistribution and use in source and binary forms, with or without *
30  * modification, are permitted according to the terms listed in LICENSE *
31  * (http://tmva.sourceforge.net/LICENSE) *
32  **********************************************************************************/
33 
34 #ifndef ROOT_TMVA_MethodANNBase
35 #define ROOT_TMVA_MethodANNBase
36 
37 //////////////////////////////////////////////////////////////////////////
38 // //
39 // MethodANNBase //
40 // //
41 // Base class for all TMVA methods using artificial neural networks //
42 // //
43 //////////////////////////////////////////////////////////////////////////
44 
45 #include "TString.h"
46 #include <vector>
47 #include "TTree.h"
48 #include "TObjArray.h"
49 #include "TRandom3.h"
50 #include "TMatrix.h"
51 
52 #include "TMVA/MethodBase.h"
53 #include "TMVA/TActivation.h"
54 #include "TMVA/TNeuron.h"
55 #include "TMVA/TNeuronInput.h"
56 
57 class TH1;
58 class TH1F;
59 
60 namespace TMVA {
61 
62  class MethodANNBase : public MethodBase {
63 
64  public:
65 
66  // constructors dictated by subclassing off of MethodBase
67  MethodANNBase( const TString& jobName,
68  Types::EMVA methodType,
69  const TString& methodTitle,
70  DataSetInfo& theData,
71  const TString& theOption );
72 
73  MethodANNBase( Types::EMVA methodType,
74  DataSetInfo& theData,
75  const TString& theWeightFile);
76 
77  virtual ~MethodANNBase();
78 
79  // this does the real initialization work
80  void InitANNBase();
81 
82  // setters for subclasses
83  void SetActivation(TActivation* activation) {
84  if (fActivation != nullptr) delete fActivation;
85  fActivation = activation;
86  }
87  void SetNeuronInputCalculator(TNeuronInput* inputCalculator) {
88  if (fInputCalculator != nullptr) delete fInputCalculator;
89  fInputCalculator = inputCalculator;
90  }
91 
92  // this will have to be overridden by every subclass
93  virtual void Train() = 0;
94 
95  // print network, for debugging
96  virtual void PrintNetwork() const;
97 
98 
99  // call this function like that:
100  // ...
101  // MethodMLP* mlp = dynamic_cast<MethodMLP*>(method);
102  // std::vector<float> layerValues;
103  // mlp->GetLayerActivation (2, std::back_inserter(layerValues));
104  // ... do now something with the layerValues
105  //
106  template <typename WriteIterator>
107  void GetLayerActivation (size_t layer, WriteIterator writeIterator);
108 
110 
111  // write weights to file
112  void AddWeightsXMLTo( void* parent ) const;
113  void ReadWeightsFromXML( void* wghtnode );
114 
115  // read weights from file
116  virtual void ReadWeightsFromStream( std::istream& istr );
117 
118  // calculate the MVA value
119  virtual Double_t GetMvaValue( Double_t* err = 0, Double_t* errUpper = 0 );
120 
121  virtual const std::vector<Float_t> &GetRegressionValues();
122 
123  virtual const std::vector<Float_t> &GetMulticlassValues();
124 
125  // write method specific histos to target file
126  virtual void WriteMonitoringHistosToFile() const;
127 
128  // ranking of input variables
129  const Ranking* CreateRanking();
130 
131  // the option handling methods
132  virtual void DeclareOptions();
133  virtual void ProcessOptions();
134 
135  Bool_t Debug() const;
136 
137  enum EEstimator { kMSE=0,kCE};
138 
139  TObjArray* fNetwork; // TObjArray of TObjArrays representing network
140 
141  protected:
142 
143  virtual void MakeClassSpecific( std::ostream&, const TString& ) const;
144 
145  std::vector<Int_t>* ParseLayoutString( TString layerSpec );
146  virtual void BuildNetwork( std::vector<Int_t>* layout, std::vector<Double_t>* weights=NULL,
147  Bool_t fromFile = kFALSE );
148  void ForceNetworkInputs( const Event* ev, Int_t ignoreIndex = -1 );
150 
151  // debugging utilities
152  void PrintMessage( TString message, Bool_t force = kFALSE ) const;
154  void WaitForKeyboard();
155 
156  // accessors
157  Int_t NumCycles() { return fNcycles; }
158  TNeuron* GetInputNeuron (Int_t index) { return (TNeuron*)fInputLayer->At(index); }
159  TNeuron* GetOutputNeuron(Int_t index = 0) { return fOutputNeurons.at(index); }
160 
161  // protected variables
162  TObjArray* fSynapses; // array of pointers to synapses, no structural data
163  TActivation* fActivation; // activation function to be used for hidden layers
164  TActivation* fOutput; // activation function to be used for output layers, depending on estimator
165  TActivation* fIdentity; // activation for input and output layers
166  TRandom3* frgen; // random number generator for various uses
167  TNeuronInput* fInputCalculator; // input calculator for all neurons
168 
169  std::vector<Int_t> fRegulatorIdx; //index to different priors from every synapses
170  std::vector<Double_t> fRegulators; //the priors as regulator
173 
174  // monitoring histograms
175  TH1F* fEstimatorHistTrain; // monitors convergence of training sample
176  TH1F* fEstimatorHistTest; // monitors convergence of independent test sample
177 
178  // monitoring histograms (not available for regression)
179  void CreateWeightMonitoringHists( const TString& bulkname, std::vector<TH1*>* hv = 0 ) const;
180  std::vector<TH1*> fEpochMonHistS; // epoch monitoring histograms for signal
181  std::vector<TH1*> fEpochMonHistB; // epoch monitoring histograms for background
182  std::vector<TH1*> fEpochMonHistW; // epoch monitoring histograms for weights
183 
184 
185  // general
187  bool fUseRegulator; // zjh
188 
189  protected:
190  Int_t fRandomSeed; // random seed for initial synapse weights
191 
192  Int_t fNcycles; // number of epochs to train
193 
194  TString fNeuronType; // name of neuron activation function class
195  TString fNeuronInputType; // name of neuron input calculator class
196 
197 
198  private:
199 
200  // helper functions for building network
201  void BuildLayers(std::vector<Int_t>* layout, Bool_t from_file = false);
202  void BuildLayer(Int_t numNeurons, TObjArray* curLayer, TObjArray* prevLayer,
203  Int_t layerIndex, Int_t numLayers, Bool_t from_file = false);
204  void AddPreLinks(TNeuron* neuron, TObjArray* prevLayer);
205 
206  // helper functions for weight initialization
207  void InitWeights();
208  void ForceWeights(std::vector<Double_t>* weights);
209 
210  // helper functions for deleting network
211  void DeleteNetwork();
212  void DeleteNetworkLayer(TObjArray*& layer);
213 
214  // debugging utilities
215  void PrintLayer(TObjArray* layer) const;
216  void PrintNeuron(TNeuron* neuron) const;
217 
218  // private variables
219  TObjArray* fInputLayer; // cache this for fast access
220  std::vector<TNeuron*> fOutputNeurons; // cache this for fast access
221  TString fLayerSpec; // layout specification option
222 
223  // some static flags
224  static const Bool_t fgDEBUG = kTRUE; // debug flag
225 
226  ClassDef(MethodANNBase,0); // Base class for TMVA ANNs
227  };
228 
229 
230 
231  template <typename WriteIterator>
232  inline void MethodANNBase::GetLayerActivation (size_t layerNumber, WriteIterator writeIterator)
233  {
234  // get the activation values of the nodes in layer "layer"
235  // write the node activation values into the writeIterator
236  // assumes, that the network has been computed already (by calling
237  // "GetRegressionValues")
238 
239  if (layerNumber >= (size_t)fNetwork->GetEntriesFast())
240  return;
241 
242  TObjArray* layer = (TObjArray*)fNetwork->At(layerNumber);
243  UInt_t nNodes = layer->GetEntriesFast();
244  for (UInt_t iNode = 0; iNode < nNodes; iNode++)
245  {
246  (*writeIterator) = ((TNeuron*)layer->At(iNode))->GetActivationValue();
247  ++writeIterator;
248  }
249  }
250 
251 
252 } // namespace TMVA
253 
254 #endif
void WaitForKeyboard()
wait for keyboard input, for debugging
virtual void WriteMonitoringHistosToFile() const
write histograms to file
virtual Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
get the mva value generated by the NN
void BuildLayer(Int_t numNeurons, TObjArray *curLayer, TObjArray *prevLayer, Int_t layerIndex, Int_t numLayers, Bool_t from_file=false)
build a single layer with neurons and synapses connecting this layer to the previous layer ...
An array of TObjects.
Definition: TObjArray.h:37
Random number generator class based on M.
Definition: TRandom3.h:27
void SetActivation(TActivation *activation)
Definition: MethodANNBase.h:83
void ForceNetworkCalculations()
calculate input values to each neuron
void CreateWeightMonitoringHists(const TString &bulkname, std::vector< TH1 *> *hv=0) const
void DeleteNetwork()
delete/clear network
MethodANNBase(const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &theData, const TString &theOption)
standard constructor Note: Right now it is an option to choose the neuron input function, but only the input function "sum" leads to weight convergence – otherwise the weights go to nan and lead to an ABORT.
TActivation * fActivation
void AddPreLinks(TNeuron *neuron, TObjArray *prevLayer)
add synapses connecting a neuron to its preceding layer
const Ranking * CreateRanking()
compute ranking of input variables by summing function of weights
virtual void ReadWeightsFromStream(std::istream &istr)
destroy/clear the network then read it back in from the weights file
Virtual base Class for all MVA method.
Definition: MethodBase.h:106
virtual void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
TNeuronInput * fInputCalculator
TObjArray * fInputLayer
Basic string class.
Definition: TString.h:129
tomato 1-D histogram with a float per channel (see TH1 documentation)}
Definition: TH1.h:551
Ranking for variables in method (implementation)
Definition: Ranking.h:48
int Int_t
Definition: RtypesCore.h:41
bool Bool_t
Definition: RtypesCore.h:59
void GetLayerActivation(size_t layer, WriteIterator writeIterator)
Double_t GetActivationValue() const
Definition: TNeuron.h:105
void AddWeightsXMLTo(void *parent) const
create XML description of ANN classifier
virtual void DeclareOptions()
define the options (their key words) that can be set in the option string here the options valid for ...
#define NULL
Definition: RtypesCore.h:88
TObject * At(Int_t idx) const
Definition: TObjArray.h:165
static const Bool_t fgDEBUG
void ForceWeights(std::vector< Double_t > *weights)
force the synapse weights
Bool_t Debug() const
who the hell makes such strange Debug flags that even use "global pointers"..
TActivation * fOutput
#define ClassDef(name, id)
Definition: Rtypes.h:297
std::vector< TH1 * > fEpochMonHistB
void PrintMessage(TString message, Bool_t force=kFALSE) const
print messages, turn off printing by setting verbose and debug flag appropriately ...
TObjArray * fNetwork
Neuron class used by TMVA artificial neural network methods.
Definition: TNeuron.h:49
virtual void ProcessOptions()
do nothing specific at this moment
Class that contains all the data information.
Definition: DataSetInfo.h:60
TActivation * fIdentity
virtual void BuildNetwork(std::vector< Int_t > *layout, std::vector< Double_t > *weights=NULL, Bool_t fromFile=kFALSE)
build network given a layout (number of neurons in each layer) and optional weights array ...
void SetNeuronInputCalculator(TNeuronInput *inputCalculator)
Definition: MethodANNBase.h:87
void ReadWeightsFromXML(void *wghtnode)
read MLP from xml weight file
TObjArray * fSynapses
virtual void PrintNetwork() const
print network representation, for debugging
unsigned int UInt_t
Definition: RtypesCore.h:42
Int_t GetEntriesFast() const
Definition: TObjArray.h:64
std::vector< TH1 * > fEpochMonHistW
std::vector< Double_t > fRegulators
TNeuron * GetInputNeuron(Int_t index)
std::vector< Int_t > fRegulatorIdx
void InitWeights()
initialize the synapse weights randomly
const Bool_t kFALSE
Definition: RtypesCore.h:92
std::vector< Int_t > * ParseLayoutString(TString layerSpec)
parse layout specification string and return a vector, each entry containing the number of neurons to...
double Double_t
Definition: RtypesCore.h:55
virtual const std::vector< Float_t > & GetMulticlassValues()
get the multiclass classification values generated by the NN
TNeuron * GetOutputNeuron(Int_t index=0)
void ForceNetworkInputs(const Event *ev, Int_t ignoreIndex=-1)
force the input values of the input neurons force the value for each input neuron ...
The TH1 histogram class.
Definition: TH1.h:56
std::vector< TNeuron * > fOutputNeurons
virtual ~MethodANNBase()
destructor
Double_t GetNetworkOutput()
Abstract ClassifierFactory template that handles arbitrary types.
virtual const std::vector< Float_t > & GetRegressionValues()
get the regression value generated by the NN
void PrintNeuron(TNeuron *neuron) const
print a neuron, for debugging
std::vector< TH1 * > fEpochMonHistS
Interface for TNeuron input calculation classes.
Definition: TNeuronInput.h:42
void DeleteNetworkLayer(TObjArray *&layer)
delete a network layer
Interface for TNeuron activation function classes.
Definition: TActivation.h:42
virtual void ReadWeightsFromStream(std::istream &)=0
void BuildLayers(std::vector< Int_t > *layout, Bool_t from_file=false)
build the network layers
const Bool_t kTRUE
Definition: RtypesCore.h:91
Base class for all TMVA methods using artificial neural networks.
Definition: MethodANNBase.h:62
virtual void Train()=0
void PrintLayer(TObjArray *layer) const
print a single layer, for debugging
void InitANNBase()
initialize ANNBase object