97 fOneSided(false), fOneSidedDiscovery(false), fNominalAsimov(nominalAsimov),
99 fNLLObs(0), fNLLAsimov(0),
108 assert(nullSnapshot);
114 oocoutI((
TObject*)0,
InputArguments) <<
"AsymptotiCalculator: Minimum of POI is " << muNull->
getMin() <<
" corresponds to null snapshot - default configuration is one-sided discovery formulae " << std::endl;
152 if (!poi || poi->
getSize() == 0) {
158 <<
"The asymptotic calculator works for only one POI - consider as POI only the first parameter" 165 if(nullSnapshot ==
NULL || nullSnapshot->
getSize() == 0) {
166 oocoutE((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator::Initialize - Null model needs a snapshot. Set using modelconfig->SetSnapshot(poi)." << endl;
189 oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator::Initialize - Find best unconditional NLL on observed data" << endl;
203 if(altSnapshot ==
NULL || altSnapshot->
getSize() == 0) {
210 oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator: Building Asimov data Set" << endl;
224 <<
" set the same data bins " << data.
numEntries() <<
" in range " 225 <<
" [ " << xobs->
getMin() <<
" , " << xobs->
getMax() <<
" ]" << std::endl;
233 oocoutI((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator: Asimov data will be generated using fitted nuisance parameter values" << endl;
241 oocoutI((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator: Asimovdata set will be generated using nominal (current) nuisance parameter values" << endl;
242 nominalParams = poiAlt;
269 oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator::Initialize Find best conditional NLL on ASIMOV data set for given alt POI ( " <<
278 globObs = globObsSnapshot;
281 if (prevBins > 0 && xobs) xobs->
setBins(prevBins);
302 if (condObs) conditionalObs.
add(*condObs);
312 if (poiSet && poiSet->
getSize() > 0) {
318 paramsSetConstant.
add(*poiVar);
321 std::cout <<
"Model with more than one POI are not supported - ignore extra parameters, consider only first one" << std::endl;
350 bool skipFit = (nllParams.
getSize() == 0);
364 tol = std::max(tol,1.0);
374 std::cout <<
"AsymptoticCalculator::EvaluateNLL ........ using " << minimizer <<
" / " << algorithm
375 <<
" with strategy " << strategy <<
" and tolerance " << tol << std::endl;
378 for (
int tries = 1, maxtries = 4; tries <= maxtries; ++tries) {
380 status = minim.
minimize(minimizer, algorithm);
386 printf(
" ----> Doing a re-scan first\n");
391 printf(
" ----> trying with strategy = 1\n");
398 printf(
" ----> trying with improve\n");
399 minimizer =
"Minuit";
400 algorithm =
"migradimproved";
409 result = minim.
save();
428 if (result)
delete result;
435 std::cout <<
"AsymptoticCalculator::EvaluateNLL - value = " << val;
438 std::cout <<
" for poi fixed at = " << muTest;
441 std::cout <<
"\tfit time : ";
445 std::cout << std::endl;
475 oocoutE((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator::GetHypoTest - Error initializing Asymptotic calculator - return NULL result " << endl;
481 oocoutE((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator::GetHypoTest - Asimov data set has not been generated - return NULL result " << endl;
494 assert(nullSnapshot && nullSnapshot->
getSize() > 0);
500 if (poiTest.getSize() > 1) {
501 oocoutW((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator::GetHypoTest: snapshot has more than one POI - assume as POI first parameter " << std::endl;
511 assert(muHat &&
"no best fit parameter defined");
513 assert(muTest &&
"poi snapshot is not existing");
518 std::cout << std::endl;
519 oocoutI((
TObject*)0,
Eval) <<
"AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( " << muTest->
GetName() <<
" ) = " << muTest->
getVal() << std::endl;
520 oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator::GetHypoTest - Find best conditional NLL on OBSERVED data set ..... " << std::endl;
526 double qmu = 2.*(condNLL -
fNLLObs);
531 oocoutP((
TObject*)0,
Eval) <<
"\t OBSERVED DATA : qmu = " << qmu <<
" condNLL = " << condNLL <<
" uncond " <<
fNLLObs << std::endl;
539 oocoutW((
TObject*)0,
Minimization) <<
"AsymptoticCalculator: Found a negative value of the qmu - retry to do the unconditional fit " 550 <<
" old NLL = " <<
fNLLObs <<
" old muHat " << muHat->
getVal() << std::endl;
563 <<
" NLL = " <<
fNLLObs <<
" muHat " << muHat->
getVal() << std::endl;
569 oocoutP((
TObject*)0,
Eval) <<
"After unconditional refit, new qmu value is " << qmu << std::endl;
576 << muTest->
getVal() <<
" return a dummy result " 582 << muTest->
getVal() <<
" return a dummy result " 606 if (verbose > 0)
oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator::GetHypoTest -- Find best conditional NLL on ASIMOV data set .... " << std::endl;
619 oocoutW((
TObject*)0,
Minimization) <<
"AsymptoticCalculator: Found a negative value of the qmu Asimov- retry to do the unconditional fit " 622 oocoutW((
TObject*)0,
Minimization) <<
"AsymptoticCalculator: Fit failed for unconditional the qmu Asimov- retry unconditional fit " 640 oocoutP((
TObject*)0,
Eval) <<
"After unconditional Asimov refit, new qmu_A value is " << qmu_A << std::endl;
647 << muTest->
getVal() <<
" return a dummy result " 653 << muTest->
getVal() <<
" return a dummy result " 660 globObs = globObsSnapshot;
672 bool useQTilde =
false;
687 <<
" - using standard q asymptotic formulae " << std::endl;
698 <<
" muTest = " << muTest->
getVal() << std::endl;
705 <<
" muTest = " << muTest->
getVal() << std::endl;
711 if (qmu < 0 && qmu > -tol) qmu = 0;
712 if (qmu_A < 0 && qmu_A > -tol) qmu_A = 0;
719 double pnull = -1, palt = -1;
724 double sqrtqmu = (qmu > 0) ?
std::sqrt(qmu) : 0;
725 double sqrtqmu_A = (qmu_A > 0) ?
std::sqrt(qmu_A) : 0;
732 oocoutI((
TObject*)0,
Eval) <<
"Using one-sided limit asymptotic formula (qmu)" << endl;
734 oocoutI((
TObject*)0,
Eval) <<
"Using one-sided discovery asymptotic formula (q0)" << endl;
741 if (verbose > 2)
oocoutI((
TObject*)0,
Eval) <<
"Using two-sided asymptotic formula (tmu)" << endl;
751 if ( qmu > qmu_A && (qmu_A > 0 || qmu > tol) ) {
752 if (verbose > 2)
oocoutI((
TObject*)0,
Eval) <<
"Using qmu_tilde (qmu is greater than qmu_A)" << endl;
760 if ( qmu > qmu_A && (qmu_A > 0 || qmu > tol) ) {
761 if (verbose > 2)
oocoutI((
TObject*)0,
Eval) <<
"Using tmu_tilde (qmu is greater than qmu_A)" << endl;
773 string resultname =
"HypoTestAsymptotic_result";
779 <<
"poi = " << muTest->
getVal() <<
" qmu = " << qmu <<
" qmu_A = " << qmu_A
780 <<
" sigma = " << muTest->
getVal()/sqrtqmu_A
781 <<
" CLsplusb = " << pnull <<
" CLb = " << palt <<
" CLs = " << res->
CLs() << std::endl;
787 struct PaltFunction {
788 PaltFunction(
double offset,
double pval,
int icase) :
789 fOffset(offset), fPval(pval), fCase(icase) {}
806 if (!useCls)
return clsplusb;
808 return (clb == 0) ? -1 : clsplusb / clb;
819 PaltFunction
f( sqrttmu, palt, -1);
823 bool ret = brf.
Solve();
825 oocoutE((
TObject*)0,
Eval) <<
"Error finding expected p-values - return -1" << std::endl;
828 double sqrttmu_A = brf.
Root();
836 oocoutE((
TObject*)0,
Eval) <<
"Error finding expected p-values - return -1" << std::endl;
863 if (debug) cout <<
"looping on observable " << v->
GetName() << endl;
864 for (
int i = 0; i < v->
getBins(); ++i) {
866 if (index < obs.
getSize() -1) {
868 double prevBinVolume = binVolume;
870 FillBins(pdf, obs, data, index, binVolume, ibin);
872 binVolume = prevBinVolume;
877 double totBinVolume = binVolume * v->
getBinWidth(i);
878 double fval = pdf.
getVal(&obstmp)*totBinVolume;
881 if (fval*expectedEvents <= 0)
883 if (fval*expectedEvents < 0)
884 cout <<
"WARNING::Detected a bin with negative expected events! Please check your inputs." << endl;
886 cout <<
"WARNING::Detected a bin with zero expected events- skip it" << endl;
890 data.
add(obs, fval*expectedEvents);
893 cout <<
"bin " << ibin <<
"\t";
894 for (
int j=0; j < obs.
getSize(); ++j) { cout <<
" " << ((
RooRealVar&) obs[j]).getVal(); }
895 cout <<
" w = " << fval*expectedEvents;
906 cout <<
"ending loop on .. " << v->
GetName() << endl;
920 if (!
a->dependsOn(obs))
continue;
923 if ((pois = dynamic_cast<RooPoisson *>(
a)) != 0) {
926 }
else if ((gaus = dynamic_cast<RooGaussian *>(
a)) != 0) {
939 ret = (pois != 0 || gaus != 0 );
956 const char * pdfName = pdf.IsA()->
GetName();
958 for (
RooAbsArg *
a = iter.next();
a != 0;
a = iter.next()) {
961 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : Has two observables ?? " << endl;
966 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : Observable is not a RooRealVar??" << endl;
970 if (!
a->isConstant() ) {
972 oocoutE((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : Has two non-const arguments " << endl;
977 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : Expected is not a RooAbsReal??" << endl;
984 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : No observable?" << endl;
988 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : No observable?" << endl;
995 std::cout <<
"SetObsToExpected : setting " << myobs->
GetName() <<
" to expected value " << myexp->
getVal() <<
" of " << myexp->
GetName() << std::endl;
1013 std::cout <<
"generate counting Asimov data for pdf of type " << pdf.IsA()->
GetName() << std::endl;
1018 }
else if ((pois = dynamic_cast<RooPoisson *>(&pdf)) != 0) {
1022 }
else if ((gaus = dynamic_cast<RooGaussian *>(&pdf)) != 0) {
1056 obsAndWeight.
add(weightVar);
1073 if (printLevel >= 2) {
1074 cout <<
"Generating Asimov data for pdf " << pdf.
GetName() << endl;
1075 cout <<
"list of observables " << endl;
1080 double binVolume = 1;
1082 FillBins(pdf, obsList, *asimovData, obsIndex, binVolume, nbins);
1083 if (printLevel >= 2)
1084 cout <<
"filled from " << pdf.
GetName() <<
" " << nbins <<
" nbins " <<
" volume is " << binVolume << endl;
1102 if (printLevel >= 1)
1104 asimovData->
Print();
1108 cout <<
"sum entries is nan"<<endl;
1128 if (printLevel > 1) cout <<
" Generate Asimov data for observables"<<endl;
1136 std::map<std::string, RooDataSet*> asimovDataMap;
1140 int nrIndices = channelCat.
numTypes();
1141 if( nrIndices == 0 ) {
1144 for (
int i=0;i<nrIndices;i++){
1149 assert(pdftmp != 0);
1153 cout <<
"on type " << channelCat.
getLabel() <<
" " << channelCat.
getIndex() << endl;
1159 if (!dataSinglePdf) {
1169 cout <<
"channel: " << channelCat.
getLabel() <<
", data: ";
1170 dataSinglePdf->
Print();
1176 obsAndWeight.
add(*weightVar);
1208 std::cout <<
"MakeAsimov: Setting poi " << tmpPar->
GetName() <<
" to a constant value = " << tmpPar->
getVal() << std::endl;
1209 paramsSetConstant.
add(*tmpPar);
1213 bool hasFloatParams =
false;
1218 if (constrainParams.
getSize() > 0) hasFloatParams =
true;
1226 if ( rrv != 0 && rrv->
isConstant() == false ) { hasFloatParams =
true;
break; }
1229 if (hasFloatParams) {
1235 std::cout <<
"MakeAsimov: doing a conditional fit for finding best nuisance values " << std::endl;
1238 std::cout <<
"POI values:\n"; poi.Print(
"v");
1240 std::cout <<
"Nuis param values:\n";
1241 constrainParams.
Print(
"v");
1257 if (verbose>0) { std::cout <<
"fit time "; tw2.
Print();}
1261 std::cout <<
"Nuisance parameters after fit for asimov dataset: " << std::endl;
1278 if (genPoiValues) *allParams = *genPoiValues;
1304 if (allParamValues.
getSize() > 0) {
1306 *allVars = allParamValues;
1315 std::cout <<
"Generated Asimov data for observables "; (model.
GetObservables() )->
Print();
1318 std::cout <<
"--- Asimov data values \n";
1322 std::cout <<
"--- Asimov data numEntries = " << asimov->
numEntries() <<
" sumOfEntries = " << asimov->
sumEntries() << std::endl;
1324 std::cout <<
"\ttime for generating : "; tw.
Print();
1344 std::cout <<
"Generating Asimov data for global observables " << std::endl;
1352 gobs.snapshot(snapGlobalObsData);
1358 oocoutW((
TObject*)0,
Generation) <<
"AsymptoticCalculator::MakeAsimovData: model does not have nuisance parameters but has global observables" 1359 <<
" set global observables to model values " << endl;
1360 asimovGlobObs = gobs;
1366 if (nuispdf.get() == 0) {
1367 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::MakeAsimovData: model has nuisance parameters and global obs but no nuisance pdf " 1378 pdfList.
add(*nuispdf.get());
1383 assert(cterm &&
"AsimovUtils: a factor of the nuisance pdf is not a Pdf!");
1386 if (
typeid(*cterm) ==
typeid(
RooUniform))
continue;
1388 std::unique_ptr<RooArgSet> cpars(cterm->
getParameters(&gobs));
1390 if (cgobs->getSize() > 1) {
1392 <<
" has multiple global observables -cannot generate - skip it" << std::endl;
1395 else if (cgobs->getSize() == 0) {
1397 <<
" has no global observables - skip it" << std::endl;
1405 if (cpars->getSize() != 1) {
1407 << cterm->
GetName() <<
" has multiple floating params - cannot generate - skip it " << std::endl;
1411 bool foundServer =
false;
1414 TClass * cClass = cterm->IsA();
1415 if (verbose > 2) std::cout <<
"Constraint " << cterm->
GetName() <<
" of type " << cClass->
GetName() << std::endl;
1419 TString className = (cClass) ? cClass->
GetName() :
"undefined";
1421 << cterm->
GetName() <<
" of type " << className
1422 <<
" is a non-supported type - result might be not correct " << std::endl;
1440 << cterm->
GetName() <<
" has no direct dependence on global observable- cannot generate it " << std::endl;
1452 for (
RooAbsArg *a2 = itc.next(); a2 != 0; a2 = itc.next()) {
1453 if (TString(a2->GetName()).Contains(
"theta") ) {
1458 if (thetaGamma == 0) {
1460 << cterm->
GetName() <<
" is a Gamma distribution and no server named theta is found. Assume that the Gamma scale is 1 " << std::endl;
1464 std::cout <<
"Gamma constraint has a scale " << thetaGamma->
GetName() <<
" = " << thetaGamma->
getVal() << std::endl;
1468 for (
RooAbsArg *a2 = iter2.next(); a2 != 0; a2 = iter2.next()) {
1470 if (verbose > 2) std::cout <<
"Loop on constraint server term " << a2->
GetName() << std::endl;
1477 << cterm->
GetName() <<
" constraint term has more server depending on nuisance- cannot generate it " <<
1479 foundServer =
false;
1482 if (thetaGamma && thetaGamma->
getVal() > 0)
1489 std::cout <<
"setting global observable "<< rrv.
GetName() <<
" to value " << rrv.
getVal()
1490 <<
" which comes from " << rrv2->
GetName() << std::endl;
1495 oocoutE((
TObject*)0,
Generation) <<
"AsymptoticCalculator::MakeAsimovData - can't find nuisance for constraint term - global observables will not be set to Asimov value " << cterm->
GetName() << std::endl;
1496 std::cerr <<
"Parameters: " << std::endl;
1498 std::cerr <<
"Observables: " << std::endl;
1509 gobs.snapshot(asimovGlobObs);
1512 gobs = snapGlobalObsData;
1515 std::cout <<
"Generated Asimov data for global observables ";
1516 if (verbose == 1) gobs.Print();
1520 std::cout <<
"\nGlobal observables for data: " << std::endl;
1522 std::cout <<
"\nGlobal observables for asimov: " << std::endl;
1523 asimovGlobObs.
Print(
"V");
virtual RooAbsReal * createNLL(RooAbsData &data, const RooLinkedList &cmdList)
Construct representation of -log(L) of PDFwith given dataset.
virtual Double_t sumEntries() const =0
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
virtual Double_t getMin(const char *name=0) const
RooArgSet * getVariables(Bool_t stripDisconnected=kTRUE) const
Return RooArgSet with all variables (tree leaf nodes of expresssion tree)
static RooAbsData * GenerateAsimovData(const RooAbsPdf &pdf, const RooArgSet &observables)
generate the asimov data for the observables (not the global ones) need to deal with the case of a si...
virtual const char * GetName() const
Returns name of object.
virtual void setBin(Int_t ibin, const char *rangeName=0)
Set value to center of bin 'ibin' of binning 'rangeName' (or of default binning if no range is specif...
RooCmdArg Offset(Bool_t flag=kTRUE)
virtual Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE)
Add the specified argument to list.
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
const ModelConfig * GetAlternateModel(void) const
const RooArgSet * GetObservables() const
get RooArgSet for observables (return NULL if not existing)
virtual Double_t getMax(const char *name=0) const
virtual Bool_t add(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling add() for each element in the source coll...
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
bool Solve(int maxIter=100, double absTol=1E-8, double relTol=1E-10)
Returns the X value corresponding to the function value fy for (xmin<x<xmax).
void optimizeConst(Int_t flag)
If flag is true, perform constant term optimization on function being minimized.
Bool_t dependsOn(const RooAbsCollection &serverList, const RooAbsArg *ignoreArg=0, Bool_t valueOnly=kFALSE) const
Test whether we depend on (ie, are served by) any object in the specified collection.
void Print(Option_t *option="") const
Print the real and cpu time passed between the start and stop events.
RooArgSet * getObservables(const RooArgSet &set, Bool_t valueOnly=kTRUE) const
static double GetExpectedPValues(double pnull, double palt, double nsigma, bool usecls, bool oneSided=true)
function given the null and the alt p value - return the expected one given the N - sigma value ...
static int DefaultStrategy()
virtual const RooArgSet * get() const
RooAbsPdf * MakeNuisancePdf(RooAbsPdf &pdf, const RooArgSet &observables, const char *name)
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
RooCmdArg CloneData(Bool_t flag)
RooCmdArg PrintLevel(Int_t code)
virtual Bool_t setIndex(Int_t index, Bool_t printError=kTRUE)
Set value by specifying the index code of the desired state.
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Double_t getVal(const RooArgSet *set=0) const
HypoTestResult is a base class for results from hypothesis tests.
RooFit::MsgLevel globalKillBelow() const
RooCmdArg Strategy(Int_t code)
static RooMsgService & instance()
Return reference to singleton instance.
AsymptoticCalculator(RooAbsData &data, const ModelConfig &altModel, const ModelConfig &nullModel, bool nominalAsimov=false)
constructor for asymptotic calculator from Data set and ModelConfig
static void setHideOffset(Bool_t flag)
TRObject operator()(const T1 &t1) const
void setEps(Double_t eps)
Change MINUIT epsilon.
void setStrategy(Int_t strat)
Change MINUIT strategy to istrat.
RooAbsArg * findServer(const char *name) const
Template class to wrap any C++ callable object which takes one argument i.e.
static void SetPrintLevel(int level)
set print level (static function)
static RooAbsData * GenerateCountingAsimovData(RooAbsPdf &pdf, const RooArgSet &obs, const RooRealVar &weightVar, RooCategory *channelCat=0)
generate counting Asimov data for the case when the pdf cannot be extended assume pdf is a RooPoisson...
Common base class for the Hypothesis Test Calculators.
static RooAbsData * MakeAsimovData(RooAbsData &data, const ModelConfig &model, const RooArgSet &poiValues, RooArgSet &globObs, const RooArgSet *genPoiValues=0)
make the asimov data from the ModelConfig and list of poi - return data set and snapshot of global ob...
RooFIter serverMIterator() const
static void FillBins(const RooAbsPdf &pdf, const RooArgList &obs, RooAbsData &data, int &index, double &binVolume, int &ibin)
fill bins by looping recursively on observables
Int_t numTypes(const char *=0) const
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString...
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
virtual HypoTestResult * GetHypoTest() const
re-implement HypoTest computation using the asymptotic
virtual void Print(Option_t *options=0) const
This method must be overridden when a class wants to print itself.
void setBins(Int_t nBins, const char *name=0)
virtual Double_t expectedEvents(const RooArgSet *nset) const
Return expected number of events from this p.d.f for use in extended likelihood calculations.
virtual void add(const RooArgSet &row, Double_t weight=1, Double_t weightError=0)=0
RooRealVar represents a fundamental (non-derived) real valued object.
virtual void setVal(Double_t value)
Set value of variable to 'value'.
double Root() const
Returns root value.
static double EvaluateNLL(RooAbsPdf &pdf, RooAbsData &data, const RooArgSet *condObs, const RooArgSet *poiSet=0)
const RooArgSet * GetConditionalObservables() const
get RooArgSet for conditional observables (return NULL if not existing)
bool Initialize() const
initialize the calculator by performing a global fit and make the Asimov data set ...
RooAbsCollection * snapshot(Bool_t deepCopy=kTRUE) const
Take a snap shot of current collection contents: An owning collection is returned containing clones o...
static const std::string & DefaultMinimizerType()
const RooAbsCategoryLValue & indexCat() const
RooAbsArg * first() const
void setConstant(Bool_t value=kTRUE)
RooFitResult * save(const char *name=0, const char *title=0)
Save and return a RooFitResult snaphot of current minimizer status.
RooCmdArg Minimizer(const char *type, const char *alg=0)
const RooArgList & pdfList() const
static int DefaultPrintLevel()
void setGlobalKillBelow(RooFit::MsgLevel level)
The ROOT global object gROOT contains a list of all defined classes.
static bool SetObsToExpected(RooAbsPdf &pdf, const RooArgSet &obs)
set observed value to the expected one works for Gaussian, Poisson or LogNormal assumes mean paramete...
RooAbsData is the common abstract base class for binned and unbinned datasets.
void setNoRounding(bool flag=kTRUE)
RooDataSet is a container class to hold unbinned data.
RooCategory represents a fundamental (non-derived) discrete value object.
virtual Int_t getIndex() const
Return index number of current state.
double normal_cdf_c(double x, double sigma=1, double x0=0)
Complement of the cumulative distribution function of the normal (Gaussian) distribution (upper tail)...
static Bool_t hideOffset()
Bool_t canBeExtended() const
virtual void add(const RooArgSet &row, Double_t weight=1.0, Double_t weightError=0)
Add a data point, with its coordinates specified in the 'data' argset, to the data set...
virtual Double_t CLs() const
is simply (not a method, but a quantity)
Class for finding the root of a one dimensional function using the Brent algorithm.
RooCmdArg Import(const char *state, TH1 &histo)
const RooAbsData * GetData(void) const
static const std::string & DefaultMinimizerAlgo()
RooCmdArg Index(RooCategory &icat)
virtual Double_t sumEntries() const
Namespace for the RooStats classes.
RooAbsPdf * GetPdf() const
get model PDF (return NULL if pdf has not been specified or does not exist)
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return NULL if not existing)
RooCmdArg Hesse(Bool_t flag=kTRUE)
void Print(std::ostream &os, const OptionType &opt)
RooAbsArg * find(const char *name) const
Find object with given name in list.
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
RooArgSet * getParameters(const RooAbsData *data, Bool_t stripDisconnected=kTRUE) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
int fUseQTilde
flag to check if calculator is initialized
RooCmdArg WeightVar(const char *name, Bool_t reinterpretAsWeight=kFALSE)
bool SetAllConstant(const RooAbsCollection &coll, bool constant=true)
virtual const char * getLabel() const
Return label string of current state.
Int_t minimize(const char *type, const char *alg=0)
const ModelConfig * GetNullModel(void) const
Mother of all ROOT objects.
Int_t setPrintLevel(Int_t newLevel)
Change the MINUIT internal printing level.
RooAbsPdf * getPdf(const char *catName) const
Return the p.d.f associated with the given index category name.
void RemoveConstantParameters(RooArgSet *set)
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
const RooArgSet * GetGlobalObservables() const
get RooArgSet for global observables (return NULL if not existing)
double f2(const double *x)
RooMinimizer is a wrapper class around ROOT::Fit:Fitter that provides a seamless interface between th...
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return NULL if not existing)
RooLinkedListIter iterator(Bool_t dir=kIterForward) const
virtual RooFitResult * fitTo(RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Fit PDF to given dataset.
virtual Int_t getBins(const char *name=0) const
bool SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup)
Sets the function for the rest of the algorithms.
const RooArgSet * GetSnapshot() const
get RooArgSet for parameters for a particular hypothesis (return NULL if not existing) ...
Bool_t contains(const RooAbsArg &var) const
RooAbsArg is the common abstract base class for objects that represent a value (of arbitrary type) an...
virtual Double_t getBinWidth(Int_t i, const char *rangeName=0) const
static double DefaultTolerance()
RooCmdArg ConditionalObservables(const RooArgSet &set)
Double_t getError() const
RooSimultaneous facilitates simultaneous fitting of multiple PDFs to subsets of a given dataset...
Hypothesis Test Calculator based on the asymptotic formulae for the profile likelihood ratio...
RooLinkedListIter is the TIterator implementation for RooLinkedList.
Bool_t isConstant() const
RooCmdArg Constrain(const RooArgSet ¶ms)
virtual Int_t numEntries() const
static RooAbsData * GenerateAsimovDataSinglePdf(const RooAbsPdf &pdf, const RooArgSet &obs, const RooRealVar &weightVar, RooCategory *channelCat=0)
compute the asimov data set for an observable of a pdf use the number of bins sets in the observables...