61 : fVisHistsUseImp(
kTRUE ),
65 std::srand( randSEED );
76 , fVisHistsUseImp(
kTRUE )
122 std::vector<const TMVA::Event*> tmp;
123 for (
Long64_t ievt=0; ievt<nevents; ievt++) {
125 tmp.push_back(event);
173 if (events==0)
return 0.0;
174 if (neve==0) neve=events->size();
177 for (
UInt_t ie=0; ie<neve; ie++) {
178 sumw += ((*events)[ie])->GetWeight();
200 Log() <<
kFATAL <<
"RuleFit::BuildTree() - Attempting to build a tree NOT from a MethodRuleFit" <<
Endl;
202 std::vector<const Event *> evevec;
220 Log() <<
kFATAL <<
"RuleFit::BuildTree() - Attempting to build a tree NOT from a MethodRuleFit" <<
Endl;
256 const Int_t ntriesMax=10;
261 Bool_t useRandomisedTree = !useBoost;
271 tryAgain = ((dt==0) && (ntries<ntriesMax));
275 if (useBoost)
Boost(dt);
279 Log() <<
kWARNING <<
"------------------------------------------------------------------" <<
Endl;
280 Log() <<
kWARNING <<
" Failed growing a tree even after " << ntriesMax <<
" trials" <<
Endl;
282 Log() <<
kWARNING <<
" 1. increase the number of training events" <<
Endl;
283 Log() <<
kWARNING <<
" 2. set a lower min fraction cut (fEventsMin)" <<
Endl;
284 Log() <<
kWARNING <<
" 3. maybe also decrease the max fraction cut (fEventsMax)" <<
Endl;
285 Log() <<
kWARNING <<
" If the above warning occurs rarely only, it can be ignored" <<
Endl;
286 Log() <<
kWARNING <<
"------------------------------------------------------------------" <<
Endl;
289 Log() <<
kDEBUG <<
"Built tree with minimum cut at N = " << frnd <<
"% events" 290 <<
" => N(nodes) = " <<
fForest.back()->GetNNodes()
291 <<
" ; n(tries) = " << ntries
309 Double_t w = (*e)->GetBoostWeight();
321 Log() <<
kERROR <<
"RuleFit::RestoreEventWeights() called without having called SaveEventWeights() before!" <<
Endl;
340 std::vector<Char_t> correctSelected;
348 correctSelected.push_back(
kTRUE);
352 correctSelected.push_back(
kFALSE);
360 Double_t boostWeight = (err>0 ? (1.0-err)/err : 1000.0);
365 if (!correctSelected[ie])
366 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * boostWeight);
367 newSumw+=(*e)->GetWeight();
373 (*e)->SetBoostWeight( (*e)->GetBoostWeight() * scale);
375 Log() <<
kDEBUG <<
"boostWeight = " << boostWeight <<
" scale = " << scale <<
Endl;
385 if (ntrees==0)
return;
390 for (
UInt_t i=0; i<ntrees; i++) {
397 Log() <<
kVERBOSE <<
"Nodes in trees: average & std dev = " << sumn/ntrees <<
" , " << sig <<
Endl;
440 if (neve==0)
Log() <<
kWARNING <<
"An empty sample of training events was given" <<
Endl;
445 for (
UInt_t i=0; i<neve; i++) {
455 Log() <<
kDEBUG <<
"Number of events per tree : " << fNTreeSample
456 <<
" ( N(events) = " << neve <<
" )" 457 <<
" randomly drawn without replacement" <<
Endl;
467 evevec.resize(nevents);
468 for (
UInt_t ie=0; ie<nevents; ie++) {
473 Log() <<
kWARNING <<
"GetRndmSampleEvents() : requested sub sample size larger than total size (BUG!).";
485 if (hlist.empty())
return;
492 for (
UInt_t i=0; i<hlist.size(); i++) {
502 if (wm<wmin) wmin=wm;
519 for (
UInt_t i=0; i<hlist.size(); i++) {
538 if (!ruleHasVar)
return;
541 if(firstbin<0) firstbin=0;
549 Double_t fbfrac = (dormin ? ((fbmin+xbinw-rmin)/xbinw):1.0);
550 Double_t lbfrac = (dormax ? ((rmax-lbmax+xbinw)/xbinw):1.0);
555 for (
Int_t bin = binmin; bin<binmax+1; bin++) {
556 fbin = bin-firstbin+1;
560 else if (bin==binmax) {
574 h2->
Fill(xc,0.5,val*f);
596 for (
Int_t bin = firstbin; bin<lastbin+1; bin++) {
598 h2->
Fill(xc,0.5,val);
617 Double_t rxmin, rxmax, rymin, rymax;
618 Bool_t dorxmin, dorxmax, dorymin, dorymax;
624 if (!(ruleHasVarX || ruleHasVarY))
return;
643 Double_t fxbinmin = (dorxmin ? ((xbinmin+xbinw-vxmin)/xbinw):1.0);
644 Double_t fxbinmax = (dorxmax ? ((vxmax-xbinmax+xbinw)/xbinw):1.0);
645 Double_t fybinmin = (dorymin ? ((ybinmin+ybinw-vymin)/ybinw):1.0);
646 Double_t fybinmax = (dorymax ? ((vymax-ybinmax+ybinw)/ybinw):1.0);
651 for (
Int_t binx = binxmin; binx<binxmax+1; binx++) {
655 else if (binx==binxmax) {
662 for (
Int_t biny = binymin; biny<binymax+1; biny++) {
666 else if (biny==binymax) {
673 h2->
Fill(xc,yc,val*fx*fy);
683 Int_t nhists = hlist.size();
685 if (nhists!=nvar)
Log() <<
kFATAL <<
"BUG TRAP: number of hists is not equal the number of variables!" <<
Endl;
687 std::vector<Int_t> vindex;
690 for (
Int_t ih=0; ih<nhists; ih++) {
691 hstr = hlist[ih]->GetTitle();
692 for (
Int_t iv=0; iv<nvar; iv++) {
694 vindex.push_back(iv);
698 for (
Int_t iv=0; iv<nvar; iv++) {
701 FillCut(hlist[iv],rule,vindex[iv]);
716 if (!(ruleimp>0))
return;
719 Int_t nhists = hlist.size();
721 Int_t ncorr = (nvar*(nvar+1)/2)-nvar;
722 if (nhists!=ncorr)
Log() <<
kERROR <<
"BUG TRAP: number of corr hists is not correct! ncorr = " 723 << ncorr <<
" nvar = " << nvar <<
" nhists = " << nhists <<
Endl;
725 std::vector< std::pair<Int_t,Int_t> > vindex;
729 for (
Int_t ih=0; ih<nhists; ih++) {
730 hstr = hlist[ih]->GetName();
734 vindex.push_back( std::pair<Int_t,Int_t>(iv2,iv1) );
737 Log() <<
kERROR <<
"BUG TRAP: should not be here - failed getting var1 and var2" <<
Endl;
741 for (
Int_t ih=0; ih<nhists; ih++) {
762 var1 = titleCopy(0,splitPos);
763 var2 = titleCopy(splitPos+4, titleCopy.
Length());
776 const TString directories[5] = {
"InputVariables_Id",
777 "InputVariables_Deco",
778 "InputVariables_PCA",
779 "InputVariables_Gauss",
780 "InputVariables_Gauss_Deco" };
782 const TString corrDirName =
"CorrelationPlots";
800 done = ((varDir!=0) || (type>4));
803 Log() <<
kWARNING <<
"No input variable directory found - BUG?" <<
Endl;
809 Log() <<
kWARNING <<
"Check for other warnings related to correlation histograms" <<
Endl;
813 Log() <<
kWARNING <<
"No rulefit method directory found - BUG?" <<
Endl;
817 varDirName = varDir->
GetName();
823 Log() <<
kWARNING <<
"No correlation directory found : " << corrDirName <<
Endl;
829 Log() <<
kDEBUG <<
"Got number of plots = " << noPlots <<
Endl;
832 std::vector<TH2F *> h1Vector;
833 std::vector<TH2F *> h2CorrVector;
836 while ((key = (
TKey*)next())) {
856 h1Vector.push_back( newhist );
863 while ((key = (
TKey*)nextCorr())) {
880 TH2F *newhist =
new TH2F(newname,htitle,
900 h2CorrVector.push_back( newhist );
909 for (
UInt_t i=0; i<nrules; i++) {
920 for (
UInt_t i=0; i<nrules; i++) {
928 for (
UInt_t i=0; i<h1Vector.size(); i++) h1Vector[i]->Write();
929 for (
UInt_t i=0; i<h2CorrVector.size(); i++) h2CorrVector[i]->Write();
939 Log() <<
kWARNING <<
"<MakeDebugHists> No rulefit method directory found - bug?" <<
Endl;
944 std::vector<Double_t> distances;
945 std::vector<Double_t> fncuts;
946 std::vector<Double_t> fnvars;
952 for (
UInt_t i=0; i<nrules; i++) {
954 for (
UInt_t j=i+1; j<nrules; j++) {
960 distances.push_back(dAB);
961 fncuts.push_back(static_cast<Double_t>(nc));
962 fnvars.push_back(static_cast<Double_t>(nv));
963 if (dAB<dABmin) dABmin=dAB;
964 if (dAB>dABmax) dABmax=dAB;
969 TH1F *histDist =
new TH1F(
"RuleDist",
"Rule distances",100,dABmin,dABmax);
970 TTree *distNtuple =
new TTree(
"RuleDistNtuple",
"RuleDist ntuple");
974 distNtuple->
Branch(
"dist", &ntDist,
"dist/D");
975 distNtuple->
Branch(
"ncuts",&ntNcuts,
"ncuts/D");
976 distNtuple->
Branch(
"nvars",&ntNvars,
"nvars/D");
978 for (
UInt_t i=0; i<distances.size(); i++) {
979 histDist->
Fill(distances[i]);
980 ntDist = distances[i];
std::vector< const TMVA::Event * > fTrainingEventsRndm
void ForestStatistics()
summary of statistics of all trees
virtual const char * GetName() const
Returns name of object.
void SetPruneMethod(EPruneMethod m=kCostComplexityPruning)
void MakeForest()
make a forest of decisiontrees
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
virtual void Scale(Double_t c1=1, Option_t *option="")
Multiply this histogram by a constant c1.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
UInt_t GetNumVarsUsed() const
virtual Double_t GetMaximum(Double_t maxval=FLT_MAX) const
Return maximum value smaller than maxval of bins in the range, unless the value has been overridden b...
Double_t GetTreeEveFrac() const
Random number generator class based on M.
virtual TList * GetListOfKeys() const
MsgLogger & Endl(MsgLogger &ml)
const RuleEnsemble & GetRuleEnsemble() const
virtual void SetMaximum(Double_t maximum=-1111)
Bool_t GetCutRange(Int_t sel, Double_t &rmin, Double_t &rmax, Bool_t &dormin, Bool_t &dormax) const
get cut range for a given selector
void CalcImportance()
calculates the importance of each rule
virtual TObject * Get(const char *namecycle)
Return pointer to object identified by namecycle.
const std::vector< const TMVA::Event *> & GetTrainingEvents() const
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
Double_t CheckEvent(const TMVA::Event *, Bool_t UseYesNoLeaf=kFALSE) const
the event e is put into the decision tree (starting at the root node) and the output is NodeType (sig...
Bool_t ContainsVariable(UInt_t iv) const
check if variable in node
TString & ReplaceAll(const TString &s1, const TString &s2)
virtual Int_t Fill()
Fill all branches.
void NormVisHists(std::vector< TH2F *> &hlist)
normalize rule importance hists
THist< 1, float, THistStatContent, THistStatUncertainty > TH1F
void SetMsgType(EMsgType t)
set the current message type to that of mlog for this class and all other subtools ...
const MethodBase * fMethodBase
const std::vector< TMVA::Rule * > & GetRulesConst() const
Bool_t GetCorrVars(TString &title, TString &var1, TString &var2)
get first and second variables from title
void InitNEveEff()
init effective number of events (using event weights)
virtual void SetMinimum(Double_t minimum=-1111)
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
void FitCoefficients()
Fit the coefficients for the rule ensemble.
const RuleCut * GetRuleCut() const
tomato 1-D histogram with a float per channel (see TH1 documentation)}
std::vector< Double_t > fEventWeights
const char * GetInputTitle(Int_t i) const
void CleanupLinear()
cleanup linear model
void SetTrainingEvents(const std::vector< const TMVA::Event *> &el)
set the training events randomly
const std::vector< Double_t > & GetLinCoefficients() const
const std::vector< const TMVA::DecisionTree * > & GetForest() const
void SetMsgType(EMsgType t)
void RuleResponseStats()
calculate various statistics for this rule
RuleFit(void)
default constructor
void BuildTree(TMVA::DecisionTree *dt)
build the decision tree using fNTreeSample events from fTrainingEventsRndm
TMVA::DecisionTree::EPruneMethod GetPruneMethod() const
const std::vector< Double_t > & GetLinImportance() const
const Event * GetEvent() const
virtual Double_t GetBinCenter(Int_t bin) const
Return center of bin.
void GetRndmSampleEvents(std::vector< const TMVA::Event * > &evevec, UInt_t nevents)
draw a random subsample of the training events without replacement
DataSetInfo & DataInfo() const
void SetMinType(EMsgType minType)
SeparationBase * GetSeparationBase() const
Book space in a file, create I/O buffers, to fill them, (un)compress them.
virtual ~RuleFit(void)
destructor
Long64_t GetNTrainingEvents() const
void CalcImportance()
calculate the importance of each rule
void SetMsgType(EMsgType t)
void SetMethodBase(const MethodBase *rfbase)
set MethodBase
void CleanupRules()
cleanup rules
Double_t GetPruneStrength() const
Double_t GetImportanceCut() const
virtual Int_t Write(const char *name=0, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
void RestoreEventWeights()
save event weights - must be done before making the forest
Double_t RuleDist(const Rule &other, Bool_t useCutValue) const
Returns: -1.0 : rules are NOT equal, i.e, variables and/or cut directions are wrong >=0: rules are eq...
const MethodBase * GetMethodBase() const
void CalcVarImportance()
Calculates variable importance using eq (35) in RuleFit paper by Friedman et.al.
void Copy(const RuleFit &other)
copy method
void Initialize(Bool_t useTMVAStyle=kTRUE)
void FillVisHistCut(const Rule *rule, std::vector< TH2F *> &hlist)
help routine to MakeVisHists() - fills for all variables
void FillCorr(TH2F *h2, const TMVA::Rule *rule, Int_t v1, Int_t v2)
fill rule correlation between vx and vy, weighted with either the importance or the coefficient ...
Double_t GetCoefficient() const
void MakeDebugHists()
this will create a histograms intended rather for debugging or for the curious user ...
static const Int_t randSEED
tomato 2-D histogram with a float per channel (see TH1 documentation)}
Bool_t BeginsWith(const char *s, ECaseCompare cmp=kExact) const
void SetPruneStrength(Double_t p)
void FillLin(TH2F *h2, Int_t vind)
fill lin
The ROOT global object gROOT contains a list of all defined classes.
RuleEnsemble fRuleEnsemble
Bool_t InheritsFrom(const char *cl) const
Return kTRUE if this class inherits from a class with name "classname".
void Boost(TMVA::DecisionTree *dt)
Boost the events.
Int_t FindVarIndex(const TString &) const
find variable by name
virtual Double_t GetMinimum(Double_t minval=-FLT_MAX) const
Return minimum value larger than minval of bins in the range, unless the value has been overridden by...
virtual Int_t FindBin(Double_t x)
Find bin number corresponding to abscissa x.
TString & Remove(Ssiz_t pos)
void SaveEventWeights()
save event weights - must be done before making the forest
void Initialize(const RuleFit *rf)
Initializes all member variables with default values.
const MethodRuleFit * fMethodRuleFit
Describe directory structure in memory.
void MakeVisHists()
this will create histograms visualizing the rule ensemble
void SetCurrentType(Types::ETreeType type) const
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
void FillVisHistCorr(const Rule *rule, std::vector< TH2F *> &hlist)
help routine to MakeVisHists() - fills for all correlation plots
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
void InitPtrs(const TMVA::MethodBase *rfbase)
initialize pointers
void MakeModel()
create model
virtual Int_t Branch(TCollection *list, Int_t bufsize=32000, Int_t splitlevel=99, const char *name="")
Create one branch for each element in the collection.
Double_t PruneTree(const EventConstList *validationSample=NULL)
prune (get rid of internal nodes) the Decision tree to avoid overtraining serveral different pruning ...
Abstract ClassifierFactory template that handles arbitrary types.
void FillCut(TH2F *h2, const TMVA::Rule *rule, Int_t vind)
Fill cut.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
virtual Bool_t cd(const char *path=0)
Change current directory to "this" directory.
Double_t GetImportance() const
TDirectory * BaseDir() const
returns the ROOT directory where info/histograms etc of the corresponding MVA method instance are sto...
void Init()
Initializes all parameters using the RuleEnsemble and the training tree.
UInt_t BuildTree(const EventConstList &eventSample, DecisionTreeNode *node=NULL)
building the decision tree by recursively calling the splitting of one (root-) node into two daughter...
RuleFitParams fRuleFitParams
Double_t EvalEvent(const Event &e)
evaluate single event
Bool_t IsSignal(const Event *ev) const
std::vector< const TMVA::DecisionTree * > fForest
A TTree object has a header with a name and a title.
Double_t EvalEvent() const
void Initialize(const TMVA::MethodBase *rfbase)
initialize the parameters of the RuleFit method and make rules
Double_t CalcWeightSum(const std::vector< const TMVA::Event *> *events, UInt_t neve=0)
calculate the sum of weights
const MethodRuleFit * GetMethodRuleFit() const
virtual Int_t GetNbinsX() const
void SetRuleFit(RuleFit *rf)
Double_t Sqrt(Double_t x)
void MakeGDPath()
The following finds the gradient directed path in parameter space.
virtual Int_t GetBin(Int_t binx, Int_t biny, Int_t binz=0) const
Return Global bin number corresponding to binx,y,z.
Int_t Fill(Double_t)
Invalid Fill method.
std::vector< const TMVA::Event * > fTrainingEvents
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
THist< 2, float, THistStatContent, THistStatUncertainty > TH2F
Double_t GetSupport() const
Double_t GetMaxFracNEve() const
virtual Int_t GetNbinsY() const
virtual const char * GetTitle() const
Returns title of object.
Double_t GetMinFracNEve() const