Pseudo data (5000 events) are unfolded into three components The unfolding is performed once without and once with area constraint
Ideally, the pulls may show that the result is biased if no constraint is applied. This is expected because the true data errors are not known, and instead the sqrt(data) errors are used.
using std::cout;
while((
r<nmax)&&(
f>=probability[
r])) {
}
}
r=rnd->
Gaus(shapeParm[1],shapeParm[2]);
} else {
r=rnd->
Rndm()*(shapeParm[4]-shapeParm[3])+shapeParm[3];
}
}
void testUnfold4(bool printInfo = false)
{
static const Double_t genFrac[]={0.3,0.6,0.1};
{{1.0,2.0,1.5,0.,15.},
{1.0,7.0,2.5,0.,15.},
{0.0,0.0,0.0,0.,15.}};
TH1D *histDetDATA=
new TH1D(
"Yrec",
";DATA(Yrec)",nDet,xminDet,xmaxDet);
TH2D *histGenDetMC=
new TH2D(
"Yrec%Xgen",
"MC(Xgen,Yrec)",
nGen,xminGen,xmaxGen,nDet,xminDet,xmaxDet);
TH1D *histUnfold=
new TH1D(
"Xgen",
";DATA(Xgen)",nGen,xminGen,xmaxGen);
for(int i=0;i<nGen;i++) {
}
for(int itoy=0;itoy<1000;itoy++) {
if(!(itoy %10)) cout<<"toy iteration: "<<itoy<<"\n";
for(
Int_t i=0;i<nData;i++) {
Int_t iGen=GenerateGenEvent(nGen,genFrac);
Double_t yObs=GenerateRecEvent(genShape[iGen]);
}
for(
Int_t i=0;i<nMC;i++) {
Int_t iGen=GenerateGenEvent(nGen,genFrac);
Double_t yObs=GenerateRecEvent(genShape[iGen]);
histGenDetMC->
Fill(iGen,yObs);
}
unfold.SetInput(histDetDATA,0.0,1.0);
unfold.ScanLcurve(50,0.,0.,nullptr,nullptr,nullptr);
unfold.GetOutput(histUnfold);
for(int i=0;i<nGen;i++) {
}
unfold.ScanLcurve(50,0.,0.,nullptr,nullptr,nullptr);
unfold.GetOutput(histUnfold);
for(int i=0;i<nGen;i++) {
}
}
for(int i=0;i<nGen;i++) {
histPullNC[i]->
Fit(
"gaus");
}
for(int i=0;i<nGen;i++) {
histPullArea[i]->
Fit(
"gaus");
}
output.SaveAs(
"testUnfold4.ps");
}
Int_t gErrorIgnoreLevel
Error handling routines.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
R__EXTERN TStyle * gStyle
1-D histogram with a double per channel (see TH1 documentation)
void Reset(Option_t *option="") override
Reset.
virtual Double_t GetBinError(Int_t bin) const
Return value of error associated to bin number bin.
virtual TFitResultPtr Fit(const char *formula, Option_t *option="", Option_t *goption="", Double_t xmin=0, Double_t xmax=0)
Fit histogram with function fname.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
void Draw(Option_t *option="") override
Draw this histogram with options.
static void SetDefaultSumw2(Bool_t sumw2=kTRUE)
When this static function is called with sumw2=kTRUE, all new histograms will automatically activate ...
virtual Double_t GetBinContent(Int_t bin) const
Return content of bin number bin.
2-D histogram with a double per channel (see TH1 documentation)
void Reset(Option_t *option="") override
Reset this histogram: contents, errors, etc.
Int_t Fill(Double_t) override
Invalid Fill method.
void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0) override
Automatic pad generation by division.
Random number generator class based on M.
This is the base class for the ROOT Random number generators.
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Double_t Rndm() override
Machine independent random number generator.
virtual ULong64_t Poisson(Double_t mean)
Generates a random integer N according to a Poisson law.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
An algorithm to unfold distributions from detector to truth level, with background subtraction and pr...
static const char * GetTUnfoldVersion(void)
return a string describing the TUnfold version
@ kEConstraintArea
enforce preservation of the area
@ kEConstraintNone
use no extra constraint
@ kRegModeSize
regularise the amplitude of the output distribution
@ kHistMapOutputHoriz
truth level on x-axis of the response matrix