Again as reference distribution we choose a simple uniform distribution. The target distribution is chosen to be Gaussian with different mean values. The classifier is trained to discriminate between the reference and target distribution. We see how the neural networks generalize to unknown mean values.
Furthermore, we compare SBI to the approach of moment morphing. In this case, we can conclude, that SBI is way more sample eficcient when it comes to estimating the negative log likelihood ratio.
import ROOT
import numpy as np
from sklearn.neural_network import MLPClassifier
import itertools
ROOT.RooMsgService.instance().setGlobalKillBelow(ROOT.RooFit.WARNING)
n_samples_morph = 10000
n_bins = 4
n_samples_train = n_samples_morph * n_bins
def morphing(setting, n_dimensions):
binning = [ROOT.RooBinning(n_bins, 0.0, n_bins - 1.0) for dim in range(n_dimensions)]
grid = ROOT.RooMomentMorphFuncND.Grid(*binning)
for x_var in x_vars:
x_var.setBins(50)
mu_helps = [ROOT.RooRealVar(f"mu{i}", f"mu{i}", 0.0) for i in range(n_dimensions)]
gaussians = []
for j in range(n_dimensions):
gaussian = ROOT.RooGaussian(f"gdim{j}", f"gdim{j}", x_vars[j], mu_helps[j], sigmas[j])
gaussians.append(gaussian)
gauss_product = ROOT.RooProdPdf("gauss_product", "gauss_product", ROOT.RooArgList(*gaussians))
templates = dict()
for idx, nd_idx in enumerate(itertools.product(range(n_bins), repeat=n_dimensions)):
for i_dim in range(n_dimensions):
mu_helps[i_dim].setVal(nd_idx[i_dim])
hist = gauss_product.generateBinned(ROOT.RooArgSet(*x_vars), n_samples_morph)
for i_bin in range(hist.numEntries()):
hist.add(hist.get(i_bin), 1.0)
templates[nd_idx] = ROOT.RooHistPdf(f"histpdf{idx}", f"histpdf{idx}", ROOT.RooArgSet(*x_vars), hist, 1)
grid.addPdf(templates[nd_idx], *nd_idx)
morph_func = ROOT.RooMomentMorphFuncND("morph_func", "morph_func", [*mu_vars], [*x_vars], grid, setting)
morph_func.setPdfMode(True)
morph = ROOT.RooWrapperPdf("morph", "morph", morph_func, True)
ws.Import(morph)
mu_observed = [2.5, 2.0]
sigmas = [1.5, 1.5]
class SBI:
def __init__(self, ws, n_vars):
self.classifier = MLPClassifier(hidden_layer_sizes=(20, 20), max_iter=1000, random_state=42)
self.data_model = None
self.data_ref = None
self.X_train = None
self.y_train = None
self.ws = ws
self.n_vars = n_vars
self._training_mus = None
self._reference_mu = None
def model_data(self, model, x_vars, mu_vars, n_samples):
ws = self.ws
samples_gaussian = (
ws[model].generate([ws[x] for x in x_vars] + [ws[mu] for mu in mu_vars], n_samples).to_numpy()
)
self._training_mus = np.array([samples_gaussian[mu] for mu in mu_vars]).T
data_test_model = np.array([samples_gaussian[x] for x in x_vars]).T
self.data_model = data_test_model.reshape(-1, self.n_vars)
def reference_data(self, model, x_vars, mu_vars, n_samples, help_model):
ws = self.ws
samples_uniform = ws[model].generate([ws[x] for x in x_vars], n_samples)
data_reference_model = np.array(
[samples_uniform.get(i).getRealValue(x) for x in x_vars for i in range(samples_uniform.numEntries())]
)
self.data_ref = data_reference_model.reshape(-1, self.n_vars)
samples_mu = ws[help_model].generate([ws[mu] for mu in mu_vars], n_samples)
mu_data = np.array(
[samples_mu.get(i).getRealValue(mu) for mu in mu_vars for i in range(samples_mu.numEntries())]
)
self._reference_mu = mu_data.reshape(-1, self.n_vars)
def preprocessing(self):
thetas = np.concatenate((self._training_mus, self._reference_mu))
X = np.concatenate([self.data_model, self.data_ref])
self.y_train = np.concatenate([np.ones(
len(self.data_model)), np.zeros(
len(self.data_ref))])
self.X_train = np.concatenate([X, thetas], axis=1)
def train_classifier(self):
self.classifier.fit(self.X_train, self.y_train)
def build_ws(mu_observed):
n_vars =
len(mu_observed)
x_vars = [ROOT.RooRealVar(f"x{i}", f"x{i}", -5, 15) for i in range(n_vars)]
mu_vars = [ROOT.RooRealVar(f"mu{i}", f"mu{i}", mu_observed[i], 0, 4) for i in range(n_vars)]
gaussians = [ROOT.RooGaussian(f"gauss{i}", f"gauss{i}", x_vars[i], mu_vars[i], sigmas[i]) for i in range(n_vars)]
uniforms = [ROOT.RooUniform(f"uniform{i}", f"uniform{i}", x_vars[i]) for i in range(n_vars)]
uniforms_help = [ROOT.RooUniform(f"uniformh{i}", f"uniformh{i}", mu_vars[i]) for i in range(n_vars)]
gauss = ROOT.RooProdPdf("gauss", "gauss", ROOT.RooArgList(*gaussians))
uniform = ROOT.RooProdPdf("uniform", "uniform", ROOT.RooArgList(*uniforms))
uniform_help = ROOT.RooProdPdf("uniform_help", "uniform_help", ROOT.RooArgList(*uniforms_help))
obs_data = gauss.generate(ROOT.RooArgSet(*x_vars), n_samples_morph)
obs_data.SetName("obs_data")
ws = ROOT.RooWorkspace()
ws.Import(x_vars)
ws.Import(mu_vars)
ws.Import(gauss)
ws.Import(uniform)
ws.Import(uniform_help)
ws.Import(obs_data)
return ws
ws = build_ws(mu_observed)
x_vars = [ws[f
"x{i}"]
for i
in range(
len(mu_observed))]
mu_vars = [ws[f
"mu{i}"]
for i
in range(
len(mu_observed))]
morphing(ROOT.RooMomentMorphFuncND.Linear,
len(mu_observed))
nll_morph = ws["morph"].createNLL(ws["obs_data"], EvalBackend="legacy")
model = SBI(ws,
len(mu_observed))
model.model_data("gauss", [x.GetName() for x in x_vars], [mu.GetName() for mu in mu_vars], n_samples_train)
model.reference_data(
"uniform", [x.GetName() for x in x_vars], [mu.GetName() for mu in mu_vars], n_samples_train, "uniform_help"
)
model.preprocessing()
model.train_classifier()
sbi_model = model
def learned_likelihood_ratio(*args):
n = max(*(
len(a)
for a
in args))
X = np.zeros((n,
len(args)))
for i
in range(
len(args)):
X[:, i] = args[i]
prob = sbi_model.classifier.predict_proba(X)[:, 1]
return prob / (1.0 - prob)
combined_vars = ROOT.RooArgList()
for var in x_vars + mu_vars:
combined_vars.add(var)
lhr_learned = ROOT.RooFit.bindFunction("MyBinFunc", learned_likelihood_ratio, combined_vars)
lhr_calc = ROOT.RooFormulaVar("lhr_calc", "x[0] / x[1]", [ws["gauss"], ws["uniform"]])
nll_gauss = ws["gauss"].createNLL(ws["obs_data"])
pdf_learned = ROOT.RooWrapperPdf("learned_pdf", "learned_pdf", lhr_learned, True)
nllr_learned = pdf_learned.createNLL(ws["obs_data"])
frame1 = mu_vars[0].frame(
Title="NLL of SBI vs. Morphing;#mu_{1};NLL",
Range=(mu_observed[0] - 1, mu_observed[0] + 1),
)
nll_gauss.plotOn(frame1, ShiftToZero=True, LineColor="kP6Yellow", Name="gauss")
ROOT.RooAbsReal.setEvalErrorLoggingMode("Ignore")
nll_morph.plotOn(frame1, ShiftToZero=True, LineColor="kP6Red", Name="morph")
ROOT.RooAbsReal.setEvalErrorLoggingMode("PrintErrors")
nllr_learned.plotOn(frame1, LineColor="kP6Blue", ShiftToZero=True, Name="learned")
ROOT.gInterpreter.Declare(
"""
RooAbsArg &my_deref(std::unique_ptr<RooAbsArg> const& ptr) { return *ptr; }
"""
)
norm_set = ROOT.RooArgSet(x_vars)
lhr_calc_final_ptr = ROOT.RooFit.Detail.compileForNormSet(lhr_calc, norm_set)
lhr_calc_final = ROOT.my_deref(lhr_calc_final_ptr)
lhr_calc_final.recursiveRedirectServers(norm_set)
frame2 = x_vars[0].frame(Title="Likelihood ratio r(x_{1}|#mu_{1}=2.5);x_{1};p_{gauss}/p_{uniform}")
lhr_learned.plotOn(frame2, LineColor="kP6Blue", Name="learned_ratio")
lhr_calc_final.plotOn(frame2, LineColor="kP6Yellow", Name="exact")
single_canvas = True
c = ROOT.TCanvas("", "", 1200 if single_canvas else 600, 600)
if single_canvas:
c.Divide(2)
c.cd(1)
ROOT.gPad.SetLeftMargin(0.15)
frame1.GetYaxis().SetTitleOffset(1.8)
frame1.Draw()
legend1 = ROOT.TLegend(0.43, 0.63, 0.8, 0.87)
legend1.SetFillColor("background")
legend1.SetLineColor("background")
legend1.SetTextSize(0.04)
legend1.AddEntry("learned", "learned (SBI)", "L")
legend1.AddEntry("gauss", "true NLL", "L")
legend1.AddEntry("morphed", "moment morphing", "L")
legend1.Draw()
if single_canvas:
c.cd(2)
ROOT.gPad.SetLeftMargin(0.15)
frame2.GetYaxis().SetTitleOffset(1.8)
else:
c.SaveAs("rf617_plot_1.png")
c = ROOT.TCanvas("", "", 600, 600)
frame2.Draw()
legend2 = ROOT.TLegend(0.53, 0.73, 0.87, 0.87)
legend2.SetFillColor("background")
legend2.SetLineColor("background")
legend2.SetTextSize(0.04)
legend2.AddEntry("learned_ratio", "learned (SBI)", "L")
legend2.AddEntry("exact", "true ratio", "L")
legend2.Draw()
if not single_canvas:
c.SaveAs("rf617_plot_2.png")
for nll in [nll_gauss, nllr_learned, nll_morph]:
minimizer = ROOT.RooMinimizer(nll)
minimizer.setErrorLevel(0.5)
minimizer.setPrintLevel(-1)
minimizer.minimize("Minuit2")
result = minimizer.save()
result.Print()
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len