import ROOT
dt = ROOT.RooRealVar("dt", "dt", -10, 10)
dterr = ROOT.RooRealVar("dterr", "per-event error on dt", 0.01, 10)
bias = ROOT.RooRealVar("bias", "bias", 0, -10, 10)
sigma = ROOT.RooRealVar("sigma", "per-event error scale factor", 1, 0.1, 10)
gm = ROOT.RooGaussModel("gm1", "gauss model scaled bt per-event error", dt, bias, sigma, dterr)
tau = ROOT.RooRealVar("tau", "tau", 1.548)
decay_gm = ROOT.RooDecay("decay_gm", "decay", dt, tau, gm, type="DoubleSided")
pdfDtErr = ROOT.RooLandau("pdfDtErr", "pdfDtErr", dterr, 1.0, 0.25)
expDataDterr = pdfDtErr.generate({dterr}, 10000)
expHistDterr = expDataDterr.binnedClone()
pdfErr = ROOT.RooHistPdf("pdfErr", "pdfErr", {dterr}, expHistDterr)
model = ROOT.RooProdPdf("model", "model", {pdfErr}, Conditional=({decay_gm}, {dt}))
data = model.generate({dt, dterr}, 10000)
model.fitTo(data, PrintLevel=-1)
hh_model = model.createHistogram("hh_model", dt, Binning=50, YVar=dict(var=dterr, Binning=50))
hh_model.SetLineColor(ROOT.kBlue)
frame = dt.frame(Title="Projection of model(dt|dterr) on dt")
data.plotOn(frame)
model.plotOn(frame)
c = ROOT.TCanvas("rf307_fullpereventerrors", "rf307_fullpereventerrors", 800, 400)
c.Divide(2)
c.cd(1)
ROOT.gPad.SetLeftMargin(0.20)
hh_model.GetZaxis().SetTitleOffset(2.5)
hh_model.Draw("surf")
c.cd(2)
ROOT.gPad.SetLeftMargin(0.15)
frame.GetYaxis().SetTitleOffset(1.6)
frame.Draw()
c.SaveAs("rf307_fullpereventerrors.png")