import ROOT
dt = ROOT.RooRealVar("dt", "dt", -10, 10)
dterr = ROOT.RooRealVar("dterr", "per-event error on dt", 0.01, 10)
bias = ROOT.RooRealVar("bias", "bias", 0, -10, 10)
sigma = ROOT.RooRealVar(
"sigma", "per-event error scale factor", 1, 0.1, 10)
gm = ROOT.RooGaussModel(
"gm1", "gauss model scaled bt per-event error", dt, bias, sigma, dterr)
tau = ROOT.RooRealVar("tau", "tau", 1.548)
decay_gm = ROOT.RooDecay("decay_gm", "decay", dt,
tau, gm, ROOT.RooDecay.DoubleSided)
pdfDtErr = ROOT.RooLandau("pdfDtErr", "pdfDtErr", dterr, ROOT.RooFit.RooConst(
1), ROOT.RooFit.RooConst(0.25))
expDataDterr = pdfDtErr.generate(ROOT.RooArgSet(dterr), 10000)
expHistDterr = expDataDterr.binnedClone()
pdfErr = ROOT.RooHistPdf(
"pdfErr", "pdfErr", ROOT.RooArgSet(dterr), expHistDterr)
model = ROOT.RooProdPdf(
"model",
"model",
ROOT.RooArgSet(pdfErr),
ROOT.RooFit.Conditional(
ROOT.RooArgSet(decay_gm),
ROOT.RooArgSet(dt)))
data = model.generate(ROOT.RooArgSet(dt, dterr), 10000)
model.fitTo(data)
hh_model = model.createHistogram("hh_model", dt, ROOT.RooFit.Binning(
50), ROOT.RooFit.YVar(dterr, ROOT.RooFit.Binning(50)))
hh_model.SetLineColor(ROOT.kBlue)
frame = dt.frame(ROOT.RooFit.Title("Projection of model(dt|dterr) on dt"))
data.plotOn(frame)
model.plotOn(frame)
c = ROOT.TCanvas("rf307_fullpereventerrors",
"rf307_fullpereventerrors", 800, 400)
c.Divide(2)
c.cd(1)
ROOT.gPad.SetLeftMargin(0.20)
hh_model.GetZaxis().SetTitleOffset(2.5)
hh_model.Draw("surf")
c.cd(2)
ROOT.gPad.SetLeftMargin(0.15)
frame.GetYaxis().SetTitleOffset(1.6)
frame.Draw()
c.SaveAs("rf307_fullpereventerrors.png")