auto checkH1 = [](
TList *out) {
if (!out) {
std::cout << "checkH1 >>> Test failure: output list not found\n";
return -1;
}
auto hdmd =
dynamic_cast<TH1F *
>(out->FindObject(
"hdmd"));
if (!hdmd) {
std::cout << "checkH1 >>> Test failure: 'hdmd' histo not found\n";
return -1;
}
if ((
Int_t)(hdmd->GetEntries()) != 7525) {
std::cout << "checkH1 >>> Test failure: 'hdmd' histo: wrong number"
" of entries ("
<< (
Int_t)(hdmd->GetEntries()) <<
": expected 7525) \n";
return -1;
}
if (
TMath::Abs((hdmd->GetMean() - 0.15512023) / 0.15512023) > 0.001) {
std::cout <<
"checkH1 >>> Test failure: 'hdmd' histo: wrong mean (" << hdmd->
GetMean()
<< ": expected 0.15512023) \n";
return -1;
}
auto h2 =
dynamic_cast<TH2F *
>(
out->FindObject(
"h2"));
if (!h2) {
std::cout << "checkH1 >>> Test failure: 'h2' histo not found\n";
return -1;
}
if ((
Int_t)(
h2->GetEntries()) != 7525) {
std::cout << "checkH1 >>> Test failure: 'h2' histo: wrong number"
" of entries ("
<< (
Int_t)(
h2->GetEntries()) <<
": expected 7525) \n";
return -1;
}
if (
TMath::Abs((
h2->GetMean() - 0.15245688) / 0.15245688) > 0.001) {
std::cout <<
"checkH1 >>> Test failure: 'h2' histo: wrong mean (" <<
h2->GetMean() <<
": expected 0.15245688) \n";
return -1;
}
return 0;
};
if (lfn)
auto hdmd =
dynamic_cast<TH1F *
>(
out->FindObject(
"hdmd"));
auto h2 =
dynamic_cast<TH2F *
>(
out->FindObject(
"h2"));
if (hdmd == 0 || h2 == 0) {
std::cout <<
"doFit: hdmd = " << hdmd <<
" , h2 = " <<
h2 <<
"\n";
return -1;
if (lfn)
}
c1->SetBottomMargin(0.15);
hdmd->GetXaxis()->SetTitle("m_{K#pi#pi} - m_{K#pi}[GeV/c^{2}]");
hdmd->GetXaxis()->SetTitleOffset(1.4);
if (
gROOT->GetListOfFunctions()->FindObject(
"f5"))
delete gROOT->GetFunction(
"f5");
return 0;
par[2] / 2.5066 / par[4] *
TMath::Exp(-xp3 / 2 / par[4] / par[4]));
return res;
};
auto f5 =
new TF1(
"f5",
fdm5, 0.139, 0.17, 5);
f5->SetParameters(1000000, .25, 2000, .1454, .001);
hdmd->Fit("f5", "lr");
Double_t ref_f5[4] = {959915.0, 0.351114, 1185.03, 0.145569};
for (int i : {0, 1, 2, 3}) {
if ((
TMath::Abs((f5->GetParameters())[i] - ref_f5[i]) / ref_f5[i]) > 0.001) {
std::cout << "\n >>> Test failure: fit to 'f5': parameter '" << f5->GetParName(i) << "' has wrong value ("
<< (f5->GetParameters())[i] << ": expected" << ref_f5[i] << ") \n";
if (lfn)
return -1;
}
}
auto c2 =
new TCanvas(
"c2",
"tauD0", 100, 100, 800, 600);
c2->SetBottomMargin(0.15);
if (
gROOT->GetListOfFunctions()->FindObject(
"f2"))
delete gROOT->GetFunction(
"f2");
const auto dxbin = (0.17 - 0.13) / 40;
const auto sigma = 0.0012;
return 0;
auto xp3 = (
x - 0.1454) * (
x - 0.1454);
return res;
};
auto f2 =
new TF1(
"f2",
fdm2, 0.139, 0.17, 2);
f2->SetParameters(10000, 10);
std::cout << "doFit: restricting fit to two bins only in this example...\n";
h2->FitSlicesX(f2, 10, 20, 10,
"g5 l");
Double_t ref_f2[2] = {52432.2, 105.481};
for (int i : {0, 1}) {
if ((
TMath::Abs((f2->GetParameters())[i] - ref_f2[i]) / ref_f2[i]) > 0.001) {
std::cout << "\n >>> Test failure: fit to 'f2': parameter '" << f2->GetParName(i) << "' has wrong value ("
<< (f2->GetParameters())[i] << ": expected" << ref_f2[i] << ") \n";
if (lfn)
return -1;
}
}
h2_1->GetXaxis()->SetTitle("#tau[ps]");
h2_1->SetMarkerStyle(21);
h2_1->Draw();
auto psdmd = (
TPaveStats *)hdmd->GetListOfFunctions()->FindObject(
"stats");
psdmd->SetOptStat(1110);
if (lfn)
return 0;
};
auto hdmd =
new TH1F(
"hdmd",
"Dm_d", 40, 0.13, 0.17);
auto h2 =
new TH2F(
"h2",
"ptD0 vs Dm_d", 30, 0.135, 0.165, 30, -3, 6);
while (reader.Next()) {
continue;
if (*fPtds_d <= 2.5)
continue;
continue;
(*fIk)--;
(*fIpi)--;
if (fNhitrp.At(*fIk) * fNhitrp.At(*fIpi) <= 1)
continue;
if (fRend.At(*fIk) - fRstart.At(*fIk) <= 22)
continue;
if (fRend.At(*fIpi) - fRstart.At(*fIpi) <= 22)
continue;
if (fNlhk.At(*fIk) <= 0.1)
continue;
if (fNlhpi.At(*fIpi) <= 0.1)
continue;
(*fIpis)--;
if (fNlhpi.At(*fIpis) <= 0.1)
continue;
if (*fNjets < 1)
continue;
hdmd->Fill(*fDm_d);
h2->Fill(*fDm_d, *fRpd0_t / 0.029979 * 1.8646 / *fPtd0_d);
}
};
auto elist =
new TEntryList(
"elist",
"H1 selection from Cut");
while (reader.Next()) {
continue;
if (*fPtds_d <= 2.5)
continue;
continue;
(*fIk)--;
(*fIpi)--;
if (fNhitrp.At(*fIk) * fNhitrp.At(*fIpi) <= 1)
continue;
if (fRend.At(*fIk) - fRstart.At(*fIk) <= 22)
continue;
if (fRend.At(*fIpi) - fRstart.At(*fIpi) <= 22)
continue;
if (fNlhk.At(*fIk) <= 0.1)
continue;
if (fNlhpi.At(*fIpi) <= 0.1)
continue;
(*fIpis)--;
if (fNlhpi.At(*fIpis) <= 0.1)
continue;
if (*fNjets < 1)
continue;
elist->Enter(reader.GetCurrentEntry(), reader.GetTree());
}
return elist;
};
auto hdmd =
new TH1F(
"hdmd",
"Dm_d", 40, 0.13, 0.17);
auto h2 =
new TH2F(
"h2",
"ptD0 vs Dm_d", 30, 0.135, 0.165, 30, -3, 6);
while (reader.Next()) {
hdmd->Fill(*fDm_d);
h2->Fill(*fDm_d, *fRpd0_t / 0.029979 * 1.8646 / *fPtd0_d);
}
};
R__EXTERN TStyle * gStyle
R__EXTERN TSystem * gSystem
A List of entry numbers in a TTree or TChain.
1-D histogram with a double per channel (see TH1 documentation)
1-D histogram with a float per channel (see TH1 documentation)
virtual Double_t GetMean(Int_t axis=1) const
For axis = 1,2 or 3 returns the mean value of the histogram along X,Y or Z axis.
2-D histogram with a float per channel (see TH1 documentation)
Use the TLine constructor to create a simple line.
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
The histogram statistics painter class.
void SetOptStat(Int_t stat=1)
The type of information printed in the histogram statistics box can be selected via the parameter mod...
void SetOptFit(Int_t fit=1)
The type of information about fit parameters printed in the histogram statistics box can be selected ...
virtual Int_t RedirectOutput(const char *name, const char *mode="a", RedirectHandle_t *h=nullptr)
Redirect standard output (stdout, stderr) to the specified file.
An interface for reading collections stored in ROOT columnar datasets.
An interface for reading values stored in ROOT columnar datasets.
A simple, robust and fast interface to read values from ROOT columnar datasets such as TTree,...
Double_t fdm5(Double_t *xx, Double_t *par)
Double_t fdm2(Double_t *xx, Double_t *par)
Double_t Exp(Double_t x)
Returns the base-e exponential function of x, which is e raised to the power x.
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
Returns x raised to the power y.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.