7#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
8#include <numpy/arrayobject.h>
42 fContinueTraining =
false;
44 fLearningRateSchedule =
"";
45 fFilenameTrainedModel =
"";
86 "Specify as 0.2 or 20% to use a fifth of the data set as validation set."
87 "Specify as 100 to use exactly 100 events. (Default: 20%)");
88 DeclareOptionRef(
fUserCodeName =
"",
"UserCode",
"Necessary python code provided by the user to be executed before loading and training the PyTorch Model");
108 if (fNumValidationString.EndsWith(
"%")) {
116 Log() << kFATAL <<
"Cannot parse number \"" << fNumValidationString
117 <<
"\". Expected string like \"20%\" or \"20.0%\"." <<
Endl;
119 }
else if (fNumValidationString.IsFloat()) {
130 Log() << kFATAL <<
"Cannot parse number \"" << fNumValidationString <<
"\". Expected string like \"0.2\" or \"100\"."
137 Log() << kFATAL <<
"Validation size \"" << fNumValidationString <<
"\" is negative." <<
Endl;
141 Log() << kFATAL <<
"Validation size \"" << fNumValidationString <<
"\" is zero." <<
Endl;
145 Log() << kFATAL <<
"Validation size \"" << fNumValidationString
146 <<
"\" is larger than or equal in size to training set (size=\"" <<
trainingSetSize <<
"\")." <<
Endl;
163 Log() << kINFO <<
"Using PyTorch - setting special configuration options " <<
Endl;
164 PyRunString(
"import torch",
"Error importing pytorch");
170 PyRunString(
"torch_major_version = int(torch.__version__.split('.')[0])");
196 Log() << kINFO <<
" Setup PyTorch Model for training" <<
Endl;
212 PyRunString(
"print('custom objects for loading model : ',load_model_custom_objects)");
215 PyRunString(
"fit = load_model_custom_objects[\"train_func\"]",
216 "Failed to load train function from file. Please use key: 'train_func' and pass training loop function as the value.");
217 Log() << kINFO <<
"Loaded pytorch train function: " <<
Endl;
221 PyRunString(
"if 'optimizer' in load_model_custom_objects:\n"
222 " optimizer = load_model_custom_objects['optimizer']\n"
224 " optimizer = torch.optim.SGD\n",
225 "Please use key: 'optimizer' and pass a pytorch optimizer as the value for a custom optimizer.");
226 Log() << kINFO <<
"Loaded pytorch optimizer: " <<
Endl;
230 PyRunString(
"criterion = load_model_custom_objects[\"criterion\"]",
231 "Failed to load loss function from file. Using MSE Loss as default. Please use key: 'criterion' and pass a pytorch loss function as the value.");
232 Log() << kINFO <<
"Loaded pytorch loss function: " <<
Endl;
236 PyRunString(
"predict = load_model_custom_objects[\"predict_func\"]",
237 "Can't find user predict function object from file. Please use key: 'predict' and pass a predict function for evaluating the model as the value.");
238 Log() << kINFO <<
"Loaded pytorch predict function: " <<
Endl;
260 Log() << kFATAL <<
"Selected analysis type is not implemented" <<
Endl;
263 Log() << kERROR <<
"Model does not have a number of inputs or output. Setup failed" <<
Endl;
275 size_t inputSize =
fNVars*nEvents;
280 if (inputSize > 0 && (
fVals.size() != inputSize ||
fPyVals ==
nullptr)) {
281 fVals.resize(inputSize);
286 Log() << kFATAL <<
"Failed to load data to Python array" <<
Endl;
290 if (outputSize > 0 && (
fOutput.size() != outputSize ||
fPyOutput ==
nullptr)) {
298 Log() << kFATAL <<
"Failed to create output data Python array" <<
Endl;
310 Log() << kFATAL <<
"Python is not initialized" <<
Endl;
315 PyRunString(
"import sys; sys.argv = ['']",
"Set sys.argv failed");
316 PyRunString(
"import torch",
"import PyTorch failed");
320 Log() << kFATAL <<
"import torch in global namespace failed!" <<
Endl;
339 Log() << kINFO <<
"Split TMVA training data in " <<
nTrainingEvents <<
" training events and "
365 else Log() << kFATAL <<
"Can not fill target vector because analysis type is not known" <<
Endl;
412 else Log() << kFATAL <<
"Can not fill target vector because analysis type is not known" <<
Endl;
430 Log() << kINFO <<
"Print Training Model Architecture" <<
Endl;
441 PyRunString(
"train_dataset = torch.utils.data.TensorDataset(torch.Tensor(trainX), torch.Tensor(trainY))",
442 "Failed to create pytorch train Dataset.");
444 PyRunString(
"train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batchSize, shuffle=False)",
445 "Failed to create pytorch train Dataloader.");
449 PyRunString(
"val_dataset = torch.utils.data.TensorDataset(torch.Tensor(valX), torch.Tensor(valY))",
450 "Failed to create pytorch validation Dataset.");
452 PyRunString(
"val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batchSize, shuffle=False)",
453 "Failed to create pytorch validation Dataloader.");
460 "schedulerSteps = {}\n"
461 "for c in strScheduleSteps.split(';'):\n"
462 " x = c.split(',')\n"
463 " schedulerSteps[int(x[0])] = float(x[1])\n",
467 PyRunString(
"def schedule(optimizer, epoch, schedulerSteps=schedulerSteps):\n"
468 " if epoch in schedulerSteps:\n"
469 " for param_group in optimizer.param_groups:\n"
470 " param_group['lr'] = float(schedulerSteps[epoch])\n",
477 PyRunString(
"schedule = None; schedulerSteps = None",
"Failed to set scheduler to None.");
484 " if curr_val<=best_val:\n"
485 " best_val = curr_val\n"
486 " best_model_jitted = torch.jit.script(model)\n"
487 " torch.jit.save(best_model_jitted, save_path)\n"
489 "Failed to setup training with option: SaveBestOnly");
490 Log() << kINFO <<
"Option SaveBestOnly: Only model weights with smallest validation loss will be stored" <<
Endl;
493 PyRunString(
"save_best = None",
"Failed to set save_best to None.");
500 PyRunString(
"trained_model = fit(model, train_loader, val_loader, num_epochs=numEpochs, batch_size=batchSize,"
501 "optimizer=optimizer, criterion=criterion, save_best=save_best, scheduler=(schedule, schedulerSteps))",
502 "Failed to train model");
513 PyRunString(
"trained_model_jitted = torch.jit.script(trained_model)",
514 "Model not scriptable. Failed to convert to torch script.");
552 PyRunString(
"for i,p in enumerate(predict(model, vals)): output[i]=p\n",
553 "Failed to get predictions");
577 for (
UInt_t i=0; i<nEvents; i++) {
588 if (
pModel==0)
Log() << kFATAL <<
"Failed to get model Python object" <<
Endl;
591 if (
pPredict==0)
Log() << kFATAL <<
"Failed to get Python predict function" <<
Endl;
600 std::vector<double> mvaValues(nEvents);
602 for (
UInt_t i=0; i<nEvents; i++) {
624 PyRunString(
"for i,p in enumerate(predict(model, vals)): output[i]=p\n",
625 "Failed to get predictions");
655 for (
UInt_t i=0; i<nEvents; i++) {
665 if (
pModel==0)
Log() << kFATAL <<
"Failed to get model Python object" <<
Endl;
668 if (
pPredict==0)
Log() << kFATAL <<
"Failed to get Python predict function" <<
Endl;
670 std::cout <<
" calling predict functon for regression \n";
709 PyRunString(
"for i,p in enumerate(predict(model, vals)): output[i]=p\n",
710 "Failed to get predictions");
726 for (
UInt_t i=0; i<nEvents; i++) {
736 if (
pModel==0)
Log() << kFATAL <<
"Failed to get model Python object" <<
Endl;
739 if (
pPredict==0)
Log() << kFATAL <<
"Failed to get Python predict function" <<
Endl;
763 Log() <<
"PyTorch is a scientific computing package supporting" <<
Endl;
764 Log() <<
"automatic differentiation. This method wraps the training" <<
Endl;
765 Log() <<
"and predictions steps of the PyTorch Python package for" <<
Endl;
766 Log() <<
"TMVA, so that dataloading, preprocessing and evaluation" <<
Endl;
767 Log() <<
"can be done within the TMVA system. To use this PyTorch" <<
Endl;
768 Log() <<
"interface, you need to generatea model with PyTorch first." <<
Endl;
769 Log() <<
"Then, this model can be loaded and trained in TMVA." <<
Endl;
#define REGISTER_METHOD(CLASS)
for example
long long Long64_t
Portable signed long integer 8 bytes.
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
Class that contains all the data information.
UInt_t GetNClasses() const
UInt_t GetNTargets() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
Long64_t GetNTrainingEvents() const
void SetCurrentEvent(Long64_t ievt) const
PyGILState_STATE m_GILState
const char * GetName() const override
Types::EAnalysisType GetAnalysisType() const
const TString & GetWeightFileDir() const
const Event * GetEvent() const
DataSetInfo & DataInfo() const
virtual void TestClassification()
initialization
UInt_t GetNVariables() const
TransformationHandler & GetTransformationHandler(Bool_t takeReroutedIfAvailable=true)
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
const Event * GetTrainingEvent(Long64_t ievt) const
void InitEvaluation(size_t nEvents)
void GetHelpMessage() const override
Double_t GetMvaValue(Double_t *errLower, Double_t *errUpper) override
std::vector< Float_t > & GetRegressionValues() override
void ProcessOptions() override
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t) override
std::vector< float > fOutput
void ReadModelFromFile() override
MethodPyTorch(const TString &jobName, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="")
std::vector< Float_t > GetAllMulticlassValues() override
Get all multi-class values.
std::vector< Double_t > GetMvaValues(Long64_t firstEvt, Long64_t lastEvt, Bool_t logProgress) override
get all the MVA values for the events of the current Data type
std::vector< float > fVals
std::vector< Float_t > & GetMulticlassValues() override
std::vector< Float_t > GetAllRegressionValues() override
Get al regression values in one call.
void TestClassification() override
initialization
TString fNumValidationString
UInt_t GetNumValidationSamples()
Validation of the ValidationSize option.
TString fLearningRateSchedule
TString fFilenameTrainedModel
void SetupPyTorchModel(Bool_t loadTrainedModel)
void DeclareOptions() override
Virtual base class for all TMVA method based on Python.
static int PyIsInitialized()
Check Python interpreter initialization status.
static PyObject * fGlobalNS
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=256)
Execute Python code from string.
Singleton class for Global types used by TMVA.
@ kSignal
Never change this number - it is elsewhere assumed to be zero !
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
create variable transformations
MsgLogger & Endl(MsgLogger &ml)