7#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
8#include <numpy/arrayobject.h>
85 "Specify as 0.2 or 20% to use a fifth of the data set as validation set."
86 "Specify as 100 to use exactly 100 events. (Default: 20%)");
87 DeclareOptionRef(
fUserCodeName =
"",
"UserCode",
"Necessary python code provided by the user to be executed before loading and training the PyTorch Model");
107 if (fNumValidationString.EndsWith(
"%")) {
115 Log() << kFATAL <<
"Cannot parse number \"" << fNumValidationString
116 <<
"\". Expected string like \"20%\" or \"20.0%\"." <<
Endl;
118 }
else if (fNumValidationString.IsFloat()) {
129 Log() << kFATAL <<
"Cannot parse number \"" << fNumValidationString <<
"\". Expected string like \"0.2\" or \"100\"."
136 Log() << kFATAL <<
"Validation size \"" << fNumValidationString <<
"\" is negative." <<
Endl;
140 Log() << kFATAL <<
"Validation size \"" << fNumValidationString <<
"\" is zero." <<
Endl;
144 Log() << kFATAL <<
"Validation size \"" << fNumValidationString
145 <<
"\" is larger than or equal in size to training set (size=\"" <<
trainingSetSize <<
"\")." <<
Endl;
162 Log() << kINFO <<
"Using PyTorch - setting special configuration options " <<
Endl;
163 PyRunString(
"import torch",
"Error importing pytorch");
169 PyRunString(
"torch_major_version = int(torch.__version__.split('.')[0])");
195 Log() << kINFO <<
" Setup PyTorch Model for training" <<
Endl;
211 PyRunString(
"print('custom objects for loading model : ',load_model_custom_objects)");
214 PyRunString(
"fit = load_model_custom_objects[\"train_func\"]",
215 "Failed to load train function from file. Please use key: 'train_func' and pass training loop function as the value.");
216 Log() << kINFO <<
"Loaded pytorch train function: " <<
Endl;
220 PyRunString(
"if 'optimizer' in load_model_custom_objects:\n"
221 " optimizer = load_model_custom_objects['optimizer']\n"
223 " optimizer = torch.optim.SGD\n",
224 "Please use key: 'optimizer' and pass a pytorch optimizer as the value for a custom optimizer.");
225 Log() << kINFO <<
"Loaded pytorch optimizer: " <<
Endl;
229 PyRunString(
"criterion = load_model_custom_objects[\"criterion\"]",
230 "Failed to load loss function from file. Using MSE Loss as default. Please use key: 'criterion' and pass a pytorch loss function as the value.");
231 Log() << kINFO <<
"Loaded pytorch loss function: " <<
Endl;
235 PyRunString(
"predict = load_model_custom_objects[\"predict_func\"]",
236 "Can't find user predict function object from file. Please use key: 'predict' and pass a predict function for evaluating the model as the value.");
237 Log() << kINFO <<
"Loaded pytorch predict function: " <<
Endl;
261 else Log() << kFATAL <<
"Selected analysis type is not implemented" <<
Endl;
284 Log() << kFATAL <<
"Python is not initialized" <<
Endl;
289 PyRunString(
"import sys; sys.argv = ['']",
"Set sys.argv failed");
290 PyRunString(
"import torch",
"import PyTorch failed");
294 Log() << kFATAL <<
"import torch in global namespace failed!" <<
Endl;
313 Log() << kINFO <<
"Split TMVA training data in " <<
nTrainingEvents <<
" training events and "
339 else Log() << kFATAL <<
"Can not fill target vector because analysis type is not known" <<
Endl;
386 else Log() << kFATAL <<
"Can not fill target vector because analysis type is not known" <<
Endl;
404 Log() << kINFO <<
"Print Training Model Architecture" <<
Endl;
415 PyRunString(
"train_dataset = torch.utils.data.TensorDataset(torch.Tensor(trainX), torch.Tensor(trainY))",
416 "Failed to create pytorch train Dataset.");
418 PyRunString(
"train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batchSize, shuffle=False)",
419 "Failed to create pytorch train Dataloader.");
423 PyRunString(
"val_dataset = torch.utils.data.TensorDataset(torch.Tensor(valX), torch.Tensor(valY))",
424 "Failed to create pytorch validation Dataset.");
426 PyRunString(
"val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batchSize, shuffle=False)",
427 "Failed to create pytorch validation Dataloader.");
434 "schedulerSteps = {}\n"
435 "for c in strScheduleSteps.split(';'):\n"
436 " x = c.split(',')\n"
437 " schedulerSteps[int(x[0])] = float(x[1])\n",
441 PyRunString(
"def schedule(optimizer, epoch, schedulerSteps=schedulerSteps):\n"
442 " if epoch in schedulerSteps:\n"
443 " for param_group in optimizer.param_groups:\n"
444 " param_group['lr'] = float(schedulerSteps[epoch])\n",
451 PyRunString(
"schedule = None; schedulerSteps = None",
"Failed to set scheduler to None.");
458 " if curr_val<=best_val:\n"
459 " best_val = curr_val\n"
460 " best_model_jitted = torch.jit.script(model)\n"
461 " torch.jit.save(best_model_jitted, save_path)\n"
463 "Failed to setup training with option: SaveBestOnly");
464 Log() << kINFO <<
"Option SaveBestOnly: Only model weights with smallest validation loss will be stored" <<
Endl;
467 PyRunString(
"save_best = None",
"Failed to set save_best to None.");
474 PyRunString(
"trained_model = fit(model, train_loader, val_loader, num_epochs=numEpochs, batch_size=batchSize,"
475 "optimizer=optimizer, criterion=criterion, save_best=save_best, scheduler=(schedule, schedulerSteps))",
476 "Failed to train model");
487 PyRunString(
"trained_model_jitted = torch.jit.script(trained_model)",
488 "Model not scriptable. Failed to convert to torch script.");
525 PyRunString(
"for i,p in enumerate(predict(model, vals)): output[i]=p\n",
526 "Failed to get predictions");
554 <<
" sample (" << nEvents <<
" events)" <<
Endl;
557 for (
UInt_t i=0; i<nEvents; i++) {
572 if (
pModel==0)
Log() << kFATAL <<
"Failed to get model Python object" <<
Endl;
575 if (
pPredict==0)
Log() << kFATAL <<
"Failed to get Python predict function" <<
Endl;
585 std::vector<double> mvaValues(nEvents);
587 for (
UInt_t i=0; i<nEvents; i++) {
593 <<
"Elapsed time for evaluation of " << nEvents <<
" events: "
594 <<
timer.GetElapsedTime() <<
" " <<
Endl;
612 PyRunString(
"for i,p in enumerate(predict(model, vals)): output[i]=p\n",
613 "Failed to get predictions");
641 PyRunString(
"for i,p in enumerate(predict(model, vals)): output[i]=p\n",
642 "Failed to get predictions");
654 Log() <<
"PyTorch is a scientific computing package supporting" <<
Endl;
655 Log() <<
"automatic differentiation. This method wraps the training" <<
Endl;
656 Log() <<
"and predictions steps of the PyTorch Python package for" <<
Endl;
657 Log() <<
"TMVA, so that dataloading, preprocessing and evaluation" <<
Endl;
658 Log() <<
"can be done within the TMVA system. To use this PyTorch" <<
Endl;
659 Log() <<
"interface, you need to generatea model with PyTorch first." <<
Endl;
660 Log() <<
"Then, this model can be loaded and trained in TMVA." <<
Endl;
#define REGISTER_METHOD(CLASS)
for example
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
Class that contains all the data information.
UInt_t GetNClasses() const
UInt_t GetNTargets() const
Types::ETreeType GetCurrentType() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
Long64_t GetNTrainingEvents() const
void SetCurrentEvent(Long64_t ievt) const
PyGILState_STATE m_GILState
const char * GetName() const
Types::EAnalysisType GetAnalysisType() const
const TString & GetWeightFileDir() const
const TString & GetMethodName() const
const Event * GetEvent() const
DataSetInfo & DataInfo() const
virtual void TestClassification()
initialization
UInt_t GetNVariables() const
TransformationHandler & GetTransformationHandler(Bool_t takeReroutedIfAvailable=true)
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
const Event * GetTrainingEvent(Long64_t ievt) const
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
std::vector< Float_t > & GetMulticlassValues()
std::vector< float > fOutput
MethodPyTorch(const TString &jobName, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="")
virtual void TestClassification()
initialization
std::vector< Double_t > GetMvaValues(Long64_t firstEvt, Long64_t lastEvt, Bool_t logProgress)
get all the MVA values for the events of the current Data type
TString fNumValidationString
UInt_t GetNumValidationSamples()
Validation of the ValidationSize option.
void GetHelpMessage() const
TString fLearningRateSchedule
std::vector< Float_t > & GetRegressionValues()
TString fFilenameTrainedModel
void SetupPyTorchModel(Bool_t loadTrainedModel)
Double_t GetMvaValue(Double_t *errLower, Double_t *errUpper)
static int PyIsInitialized()
Check Python interpreter initialization status.
static PyObject * fGlobalNS
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=256)
Execute Python code from string.
Timing information for training and evaluation of MVA methods.
Singleton class for Global types used by TMVA.
@ kSignal
Never change this number - it is elsewhere assumed to be zero !
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
create variable transformations
MsgLogger & Endl(MsgLogger &ml)