70 fOneSided(false), fOneSidedDiscovery(false), fNominalAsimov(nominalAsimov),
72 fNLLObs(0), fNLLAsimov(0),
88 oocoutI((
TObject*)0,
InputArguments) <<
"AsymptotiCalculator: Minimum of POI is " << muNull->
getMin() <<
" corresponds to null snapshot - default configuration is one-sided discovery formulae " << std::endl;
125 if (!poi || poi->
getSize() == 0) {
131 <<
"The asymptotic calculator works for only one POI - consider as POI only the first parameter" 138 if(nullSnapshot ==
NULL || nullSnapshot->
getSize() == 0) {
139 oocoutE((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator::Initialize - Null model needs a snapshot. Set using modelconfig->SetSnapshot(poi)." << endl;
162 oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator::Initialize - Find best unconditional NLL on observed data" << endl;
176 if(altSnapshot ==
NULL || altSnapshot->
getSize() == 0) {
183 oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator: Building Asimov data Set" << endl;
197 <<
" set the same data bins " << data.
numEntries() <<
" in range " 198 <<
" [ " << xobs->
getMin() <<
" , " << xobs->
getMax() <<
" ]" << std::endl;
206 oocoutI((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator: Asimov data will be generated using fitted nuisance parameter values" << endl;
214 oocoutI((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator: Asimovdata set will be generated using nominal (current) nuisance parameter values" << endl;
215 nominalParams = poiAlt;
242 oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator::Initialize Find best conditional NLL on ASIMOV data set for given alt POI ( " <<
251 globObs = globObsSnapshot;
254 if (prevBins > 0 && xobs) xobs->
setBins(prevBins);
275 if (condObs) conditionalObs.
add(*condObs);
285 if (poiSet && poiSet->
getSize() > 0) {
291 paramsSetConstant.
add(*poiVar);
294 std::cout <<
"Model with more than one POI are not supported - ignore extra parameters, consider only first one" << std::endl;
323 bool skipFit = (nllParams.
getSize() == 0);
337 tol = std::max(tol,1.0);
347 std::cout <<
"AsymptoticCalculator::EvaluateNLL ........ using " << minimizer <<
" / " << algorithm
348 <<
" with strategy " << strategy <<
" and tolerance " << tol << std::endl;
351 for (
int tries = 1, maxtries = 4; tries <= maxtries; ++tries) {
353 status = minim.
minimize(minimizer, algorithm);
359 printf(
" ----> Doing a re-scan first\n");
364 printf(
" ----> trying with strategy = 1\n");
371 printf(
" ----> trying with improve\n");
372 minimizer =
"Minuit";
373 algorithm =
"migradimproved";
382 result = minim.
save();
401 if (result)
delete result;
408 std::cout <<
"AsymptoticCalculator::EvaluateNLL - value = " << val;
411 std::cout <<
" for poi fixed at = " << muTest;
414 std::cout <<
"\tfit time : ";
418 std::cout << std::endl;
448 oocoutE((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator::GetHypoTest - Error initializing Asymptotic calculator - return NULL result " << endl;
454 oocoutE((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator::GetHypoTest - Asimov data set has not been generated - return NULL result " << endl;
467 assert(nullSnapshot && nullSnapshot->
getSize() > 0);
473 if (poiTest.getSize() > 1) {
474 oocoutW((
TObject*)0,
InputArguments) <<
"AsymptoticCalculator::GetHypoTest: snapshot has more than one POI - assume as POI first parameter " << std::endl;
484 assert(muHat &&
"no best fit parameter defined");
486 assert(muTest &&
"poi snapshot is not existing");
491 std::cout << std::endl;
492 oocoutI((
TObject*)0,
Eval) <<
"AsymptoticCalculator::GetHypoTest: - perform an hypothesis test for POI ( " << muTest->
GetName() <<
" ) = " << muTest->
getVal() << std::endl;
493 oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator::GetHypoTest - Find best conditional NLL on OBSERVED data set ..... " << std::endl;
499 double qmu = 2.*(condNLL -
fNLLObs);
504 oocoutP((
TObject*)0,
Eval) <<
"\t OBSERVED DATA : qmu = " << qmu <<
" condNLL = " << condNLL <<
" uncond " <<
fNLLObs << std::endl;
512 oocoutW((
TObject*)0,
Minimization) <<
"AsymptoticCalculator: Found a negative value of the qmu - retry to do the unconditional fit " 523 <<
" old NLL = " <<
fNLLObs <<
" old muHat " << muHat->
getVal() << std::endl;
536 <<
" NLL = " <<
fNLLObs <<
" muHat " << muHat->
getVal() << std::endl;
542 oocoutP((
TObject*)0,
Eval) <<
"After unconditional refit, new qmu value is " << qmu << std::endl;
549 << muTest->
getVal() <<
" return a dummy result " 555 << muTest->
getVal() <<
" return a dummy result " 579 if (verbose > 0)
oocoutP((
TObject*)0,
Eval) <<
"AsymptoticCalculator::GetHypoTest -- Find best conditional NLL on ASIMOV data set .... " << std::endl;
592 oocoutW((
TObject*)0,
Minimization) <<
"AsymptoticCalculator: Found a negative value of the qmu Asimov- retry to do the unconditional fit " 595 oocoutW((
TObject*)0,
Minimization) <<
"AsymptoticCalculator: Fit failed for unconditional the qmu Asimov- retry unconditional fit " 613 oocoutP((
TObject*)0,
Eval) <<
"After unconditional Asimov refit, new qmu_A value is " << qmu_A << std::endl;
620 << muTest->
getVal() <<
" return a dummy result " 626 << muTest->
getVal() <<
" return a dummy result " 633 globObs = globObsSnapshot;
645 bool useQTilde =
false;
660 <<
" - using standard q asymptotic formulae " << std::endl;
671 <<
" muTest = " << muTest->
getVal() << std::endl;
678 <<
" muTest = " << muTest->
getVal() << std::endl;
684 if (qmu < 0 && qmu > -tol) qmu = 0;
685 if (qmu_A < 0 && qmu_A > -tol) qmu_A = 0;
692 double pnull = -1, palt = -1;
697 double sqrtqmu = (qmu > 0) ?
std::sqrt(qmu) : 0;
698 double sqrtqmu_A = (qmu_A > 0) ?
std::sqrt(qmu_A) : 0;
705 oocoutI((
TObject*)0,
Eval) <<
"Using one-sided limit asymptotic formula (qmu)" << endl;
707 oocoutI((
TObject*)0,
Eval) <<
"Using one-sided discovery asymptotic formula (q0)" << endl;
714 if (verbose > 2)
oocoutI((
TObject*)0,
Eval) <<
"Using two-sided asimptotic formula (tmu)" << endl;
724 if ( qmu > qmu_A && (qmu_A > 0 || qmu > tol) ) {
725 if (verbose > 2)
oocoutI((
TObject*)0,
Eval) <<
"Using qmu_tilde (qmu is greater than qmu_A)" << endl;
733 if ( qmu > qmu_A && (qmu_A > 0 || qmu > tol) ) {
734 if (verbose > 2)
oocoutI((
TObject*)0,
Eval) <<
"Using tmu_tilde (qmu is greater than qmu_A)" << endl;
746 string resultname =
"HypoTestAsymptotic_result";
752 <<
"poi = " << muTest->
getVal() <<
" qmu = " << qmu <<
" qmu_A = " << qmu_A
753 <<
" sigma = " << muTest->
getVal()/sqrtqmu_A
754 <<
" CLsplusb = " << pnull <<
" CLb = " << palt <<
" CLs = " << res->
CLs() << std::endl;
760 struct PaltFunction {
761 PaltFunction(
double offset,
double pval,
int icase) :
762 fOffset(offset), fPval(pval), fCase(icase) {}
763 double operator() (
double x)
const {
777 if (!useCls)
return clsplusb;
779 return (clb == 0) ? -1 : clsplusb / clb;
790 PaltFunction
f( sqrttmu, palt, -1);
794 bool ret = brf.
Solve();
796 oocoutE((
TObject*)0,
Eval) <<
"Error finding expected p-values - return -1" << std::endl;
799 double sqrttmu_A = brf.
Root();
807 oocoutE((
TObject*)0,
Eval) <<
"Error finding expected p-values - return -1" << std::endl;
833 if (debug) cout <<
"looping on observable " << v->
GetName() << endl;
834 for (
int i = 0; i < v->
getBins(); ++i) {
836 if (index < obs.
getSize() -1) {
838 double prevBinVolume = binVolume;
840 FillBins(pdf, obs, data, index, binVolume, ibin);
842 binVolume = prevBinVolume;
847 double totBinVolume = binVolume * v->
getBinWidth(i);
848 double fval = pdf.
getVal(&obstmp)*totBinVolume;
851 if (fval*expectedEvents <= 0)
853 if (fval*expectedEvents < 0)
854 cout <<
"WARNING::Detected a bin with negative expected events! Please check your inputs." << endl;
856 cout <<
"WARNING::Detected a bin with zero expected events- skip it" << endl;
860 data.
add(obs, fval*expectedEvents);
863 cout <<
"bin " << ibin <<
"\t";
864 for (
int j=0; j < obs.
getSize(); ++j) { cout <<
" " << ((
RooRealVar&) obs[j]).getVal(); }
865 cout <<
" w = " << fval*expectedEvents;
876 cout <<
"ending loop on .. " << v->
GetName() << endl;
889 if (!
a->dependsOn(obs))
continue;
892 if ((pois = dynamic_cast<RooPoisson *>(
a)) != 0) {
895 }
else if ((gaus = dynamic_cast<RooGaussian *>(
a)) != 0) {
908 ret = (pois != 0 || gaus != 0 );
923 const char * pdfName = pdf.IsA()->
GetName();
925 for (
RooAbsArg *
a = iter.next();
a != 0;
a = iter.next()) {
928 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : Has two observables ?? " << endl;
933 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : Observable is not a RooRealVar??" << endl;
937 if (!
a->isConstant() ) {
939 oocoutE((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : Has two non-const arguments " << endl;
944 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : Expected is not a RooAbsReal??" << endl;
951 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : No observable?" << endl;
955 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::SetObsExpected( " << pdfName <<
" ) : No observable?" << endl;
962 std::cout <<
"SetObsToExpected : setting " << myobs->
GetName() <<
" to expected value " << myexp->
getVal() <<
" of " << myexp->
GetName() << std::endl;
979 std::cout <<
"generate counting Asimov data for pdf of type " << pdf.IsA()->
GetName() << std::endl;
984 }
else if ((pois = dynamic_cast<RooPoisson *>(&pdf)) != 0) {
988 }
else if ((gaus = dynamic_cast<RooGaussian *>(&pdf)) != 0) {
1020 obsAndWeight.
add(weightVar);
1037 if (printLevel >= 2) {
1038 cout <<
"Generating Asimov data for pdf " << pdf.
GetName() << endl;
1039 cout <<
"list of observables " << endl;
1044 double binVolume = 1;
1046 FillBins(pdf, obsList, *asimovData, obsIndex, binVolume, nbins);
1047 if (printLevel >= 2)
1048 cout <<
"filled from " << pdf.
GetName() <<
" " << nbins <<
" nbins " <<
" volume is " << binVolume << endl;
1066 if (printLevel >= 1)
1068 asimovData->
Print();
1072 cout <<
"sum entries is nan"<<endl;
1090 if (printLevel > 1) cout <<
" Generate Asimov data for observables"<<endl;
1098 std::map<std::string, RooDataSet*> asimovDataMap;
1102 int nrIndices = channelCat.
numTypes();
1103 if( nrIndices == 0 ) {
1106 for (
int i=0;i<nrIndices;i++){
1111 assert(pdftmp != 0);
1115 cout <<
"on type " << channelCat.
getLabel() <<
" " << channelCat.
getIndex() << endl;
1121 if (!dataSinglePdf) {
1131 cout <<
"channel: " << channelCat.
getLabel() <<
", data: ";
1132 dataSinglePdf->
Print();
1138 obsAndWeight.
add(*weightVar);
1170 std::cout <<
"MakeAsimov: Setting poi " << tmpPar->
GetName() <<
" to a constant value = " << tmpPar->
getVal() << std::endl;
1171 paramsSetConstant.
add(*tmpPar);
1175 bool hasFloatParams =
false;
1180 if (constrainParams.
getSize() > 0) hasFloatParams =
true;
1188 if ( rrv != 0 && rrv->
isConstant() == false ) { hasFloatParams =
true;
break; }
1191 if (hasFloatParams) {
1197 std::cout <<
"MakeAsimov: doing a conditional fit for finding best nuisance values " << std::endl;
1200 std::cout <<
"POI values:\n"; poi.Print(
"v");
1202 std::cout <<
"Nuis param values:\n";
1203 constrainParams.
Print(
"v");
1219 if (verbose>0) { std::cout <<
"fit time "; tw2.
Print();}
1223 std::cout <<
"Nuisance parameters after fit for asimov dataset: " << std::endl;
1240 if (genPoiValues) *allParams = *genPoiValues;
1266 if (allParamValues.
getSize() > 0) {
1268 *allVars = allParamValues;
1277 std::cout <<
"Generated Asimov data for observables "; (model.
GetObservables() )->
Print();
1280 std::cout <<
"--- Asimov data values \n";
1284 std::cout <<
"--- Asimov data numEntries = " << asimov->
numEntries() <<
" sumOfEntries = " << asimov->
sumEntries() << std::endl;
1286 std::cout <<
"\ttime for generating : "; tw.
Print();
1306 std::cout <<
"Generating Asimov data for global observables " << std::endl;
1314 gobs.snapshot(snapGlobalObsData);
1320 oocoutW((
TObject*)0,
Generation) <<
"AsymptoticCalculator::MakeAsimovData: model does not have nuisance parameters but has global observables" 1321 <<
" set global observales to model values " << endl;
1322 asimovGlobObs = gobs;
1328 if (nuispdf.get() == 0) {
1329 oocoutF((
TObject*)0,
Generation) <<
"AsymptoticCalculator::MakeAsimovData: model has nuisance parameters and global obs but no nuisance pdf " 1340 pdfList.
add(*nuispdf.get());
1345 assert(cterm &&
"AsimovUtils: a factor of the nuisance pdf is not a Pdf!");
1348 if (
typeid(*cterm) ==
typeid(
RooUniform))
continue;
1350 std::unique_ptr<RooArgSet> cpars(cterm->
getParameters(&gobs));
1352 if (cgobs->getSize() > 1) {
1354 <<
" has multiple global observables -cannot generate - skip it" << std::endl;
1357 else if (cgobs->getSize() == 0) {
1359 <<
" has no global observables - skip it" << std::endl;
1367 if (cpars->getSize() != 1) {
1369 << cterm->
GetName() <<
" has multiple floating params - cannot generate - skip it " << std::endl;
1373 bool foundServer =
false;
1376 TClass * cClass = cterm->IsA();
1377 if (verbose > 2) std::cout <<
"Constraint " << cterm->
GetName() <<
" of type " << cClass->
GetName() << std::endl;
1381 TString className = (cClass) ? cClass->
GetName() :
"undefined";
1383 << cterm->
GetName() <<
" of type " << className
1384 <<
" is a non-supported type - result might be not correct " << std::endl;
1402 << cterm->
GetName() <<
" has no direct dependence on global observable- cannot generate it " << std::endl;
1414 for (
RooAbsArg *a2 = itc.next(); a2 != 0; a2 = itc.next()) {
1415 if (TString(a2->GetName()).Contains(
"theta") ) {
1420 if (thetaGamma == 0) {
1422 << cterm->
GetName() <<
" is a Gamma distribution and no server named theta is found. Assume that the Gamma scale is 1 " << std::endl;
1426 std::cout <<
"Gamma constraint has a scale " << thetaGamma->
GetName() <<
" = " << thetaGamma->
getVal() << std::endl;
1430 for (
RooAbsArg *a2 = iter2.next(); a2 != 0; a2 = iter2.next()) {
1432 if (verbose > 2) std::cout <<
"Loop on constraint server term " << a2->
GetName() << std::endl;
1439 << cterm->
GetName() <<
" constraint term has more server depending on nuisance- cannot generate it " <<
1441 foundServer =
false;
1444 if (thetaGamma && thetaGamma->
getVal() > 0)
1451 std::cout <<
"setting global observable "<< rrv.
GetName() <<
" to value " << rrv.
getVal()
1452 <<
" which comes from " << rrv2->
GetName() << std::endl;
1457 oocoutE((
TObject*)0,
Generation) <<
"AsymptoticCalculator::MakeAsimovData - can't find nuisance for constraint term - global observales will not be set to Asimov value " << cterm->
GetName() << std::endl;
1458 std::cerr <<
"Parameters: " << std::endl;
1460 std::cerr <<
"Observables: " << std::endl;
1471 gobs.snapshot(asimovGlobObs);
1474 gobs = snapGlobalObsData;
1477 std::cout <<
"Generated Asimov data for global observables ";
1478 if (verbose == 1) gobs.Print();
1482 std::cout <<
"\nGlobal observables for data: " << std::endl;
1484 std::cout <<
"\nGlobal observables for asimov: " << std::endl;
1485 asimovGlobObs.
Print(
"V");
virtual RooAbsReal * createNLL(RooAbsData &data, const RooLinkedList &cmdList)
Construct representation of -log(L) of PDFwith given dataset.
virtual Double_t sumEntries() const =0
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
virtual Double_t getMin(const char *name=0) const
RooArgSet * getVariables(Bool_t stripDisconnected=kTRUE) const
Return RooArgSet with all variables (tree leaf nodes of expresssion tree)
static RooAbsData * GenerateAsimovData(const RooAbsPdf &pdf, const RooArgSet &observables)
virtual const char * GetName() const
Returns name of object.
virtual void setBin(Int_t ibin, const char *rangeName=0)
Set value to center of bin 'ibin' of binning 'rangeName' (or of default binning if no range is specif...
RooCmdArg Offset(Bool_t flag=kTRUE)
virtual Bool_t add(const RooAbsArg &var, Bool_t silent=kFALSE)
Add the specified argument to list.
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
const ModelConfig * GetAlternateModel(void) const
const RooArgSet * GetObservables() const
get RooArgSet for observables (return NULL if not existing)
virtual Double_t getMax(const char *name=0) const
virtual Bool_t add(const RooAbsCollection &col, Bool_t silent=kFALSE)
Add a collection of arguments to this collection by calling add() for each element in the source coll...
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
bool Solve(int maxIter=100, double absTol=1E-8, double relTol=1E-10)
Returns the X value corresponding to the function value fy for (xmin<x<xmax).
void optimizeConst(Int_t flag)
If flag is true, perform constant term optimization on function being minimized.
Bool_t dependsOn(const RooAbsCollection &serverList, const RooAbsArg *ignoreArg=0, Bool_t valueOnly=kFALSE) const
Test whether we depend on (ie, are served by) any object in the specified collection.
void Print(Option_t *option="") const
Print the real and cpu time passed between the start and stop events.
RooArgSet * getObservables(const RooArgSet &set, Bool_t valueOnly=kTRUE) const
static double GetExpectedPValues(double pnull, double palt, double nsigma, bool usecls, bool oneSided=true)
function given the null and the alt p value - return the expected one given the N - sigma value ...
static int DefaultStrategy()
virtual const RooArgSet * get() const
RooAbsPdf * MakeNuisancePdf(RooAbsPdf &pdf, const RooArgSet &observables, const char *name)
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
RooCmdArg CloneData(Bool_t flag)
RooCmdArg PrintLevel(Int_t code)
virtual Bool_t setIndex(Int_t index, Bool_t printError=kTRUE)
Set value by specifying the index code of the desired state.
RooProdPdf is an efficient implementation of a product of PDFs of the form.
Double_t getVal(const RooArgSet *set=0) const
HypoTestResult is a base class for results from hypothesis tests.
RooFit::MsgLevel globalKillBelow() const
RooCmdArg Strategy(Int_t code)
static RooMsgService & instance()
Return reference to singleton instance.
AsymptoticCalculator(RooAbsData &data, const ModelConfig &altModel, const ModelConfig &nullModel, bool nominalAsimov=false)
static void setHideOffset(Bool_t flag)
void setEps(Double_t eps)
Change MINUIT epsilon.
void setStrategy(Int_t strat)
Change MINUIT strategy to istrat.
RooAbsArg * findServer(const char *name) const
Template class to wrap any C++ callable object which takes one argument i.e.
static void SetPrintLevel(int level)
static RooAbsData * GenerateCountingAsimovData(RooAbsPdf &pdf, const RooArgSet &obs, const RooRealVar &weightVar, RooCategory *channelCat=0)
Common base class for the Hypothesis Test Calculators.
static RooAbsData * MakeAsimovData(RooAbsData &data, const ModelConfig &model, const RooArgSet &poiValues, RooArgSet &globObs, const RooArgSet *genPoiValues=0)
make the asimov data from the ModelConfig and list of poi - return data set annd snapshoot of global ...
RooFIter serverMIterator() const
static void FillBins(const RooAbsPdf &pdf, const RooArgList &obs, RooAbsData &data, int &index, double &binVolume, int &ibin)
Int_t numTypes(const char *=0) const
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString...
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
virtual HypoTestResult * GetHypoTest() const
re-implement HypoTest computation using the asymptotic
virtual void Print(Option_t *options=0) const
This method must be overridden when a class wants to print itself.
void setBins(Int_t nBins, const char *name=0)
virtual Double_t expectedEvents(const RooArgSet *nset) const
Return expected number of events from this p.d.f for use in extended likelihood calculations.
virtual void add(const RooArgSet &row, Double_t weight=1, Double_t weightError=0)=0
RooRealVar represents a fundamental (non-derived) real valued object.
virtual void setVal(Double_t value)
Set value of variable to 'value'.
double Root() const
Returns root value.
static double EvaluateNLL(RooAbsPdf &pdf, RooAbsData &data, const RooArgSet *condObs, const RooArgSet *poiSet=0)
const RooArgSet * GetConditionalObservables() const
get RooArgSet for conditional observables (return NULL if not existing)
bool Initialize() const
initialize the calculator by performin g a global fit and make the Asimov data set ...
RooAbsCollection * snapshot(Bool_t deepCopy=kTRUE) const
Take a snap shot of current collection contents: An owning collection is returned containing clones o...
static const std::string & DefaultMinimizerType()
const RooAbsCategoryLValue & indexCat() const
RooAbsArg * first() const
void setConstant(Bool_t value=kTRUE)
RooFitResult * save(const char *name=0, const char *title=0)
Save and return a RooFitResult snaphot of current minimizer status.
RooCmdArg Minimizer(const char *type, const char *alg=0)
const RooArgList & pdfList() const
static int DefaultPrintLevel()
void setGlobalKillBelow(RooFit::MsgLevel level)
The ROOT global object gROOT contains a list of all defined classes.
static bool SetObsToExpected(RooAbsPdf &pdf, const RooArgSet &obs)
RooAbsData is the common abstract base class for binned and unbinned datasets.
void setNoRounding(bool flag=kTRUE)
RooDataSet is a container class to hold unbinned data.
RooCategory represents a fundamental (non-derived) discrete value object.
virtual Int_t getIndex() const
Return index number of current state.
double normal_cdf_c(double x, double sigma=1, double x0=0)
Complement of the cumulative distribution function of the normal (Gaussian) distribution (upper tail)...
static Bool_t hideOffset()
Bool_t canBeExtended() const
virtual void add(const RooArgSet &row, Double_t weight=1.0, Double_t weightError=0)
Add a data point, with its coordinates specified in the 'data' argset, to the data set...
virtual Double_t CLs() const
is simply (not a method, but a quantity)
Class for finding the root of a one dimensional function using the Brent algorithm.
RooCmdArg Import(const char *state, TH1 &histo)
const RooAbsData * GetData(void) const
static const std::string & DefaultMinimizerAlgo()
RooCmdArg Index(RooCategory &icat)
virtual Double_t sumEntries() const
Namespace for the RooStats classes.
RooAbsPdf * GetPdf() const
get model PDF (return NULL if pdf has not been specified or does not exist)
virtual void Print(Option_t *options=0) const
Print TNamed name and title.
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return NULL if not existing)
RooCmdArg Hesse(Bool_t flag=kTRUE)
void Print(std::ostream &os, const OptionType &opt)
RooAbsArg * find(const char *name) const
Find object with given name in list.
RooAbsReal is the common abstract base class for objects that represent a real value and implements f...
RooArgSet * getParameters(const RooAbsData *data, Bool_t stripDisconnected=kTRUE) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
int fUseQTilde
flag to check if calculator is initialized
RooCmdArg WeightVar(const char *name, Bool_t reinterpretAsWeight=kFALSE)
bool SetAllConstant(const RooAbsCollection &coll, bool constant=true)
virtual const char * getLabel() const
Return label string of current state.
Int_t minimize(const char *type, const char *alg=0)
const ModelConfig * GetNullModel(void) const
Mother of all ROOT objects.
Int_t setPrintLevel(Int_t newLevel)
Change the MINUIT internal printing level.
RooAbsPdf * getPdf(const char *catName) const
Return the p.d.f associated with the given index category name.
void RemoveConstantParameters(RooArgSet *set)
RooAbsPdf is the abstract interface for all probability density functions The class provides hybrid a...
const RooArgSet * GetGlobalObservables() const
get RooArgSet for global observables (return NULL if not existing)
double f2(const double *x)
RooMinimizer is a wrapper class around ROOT::Fit:Fitter that provides a seamless interface between th...
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return NULL if not existing)
RooLinkedListIter iterator(Bool_t dir=kIterForward) const
virtual RooFitResult * fitTo(RooAbsData &data, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none())
Fit PDF to given dataset.
virtual Int_t getBins(const char *name=0) const
bool SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup)
Sets the function for the rest of the algorithms.
const RooArgSet * GetSnapshot() const
get RooArgSet for parameters for a particular hypothesis (return NULL if not existing) ...
Bool_t contains(const RooAbsArg &var) const
RooAbsArg is the common abstract base class for objects that represent a value (of arbitrary type) an...
virtual Double_t getBinWidth(Int_t i, const char *rangeName=0) const
static double DefaultTolerance()
RooCmdArg ConditionalObservables(const RooArgSet &set)
Double_t getError() const
RooSimultaneous facilitates simultaneous fitting of multiple PDFs to subsets of a given dataset...
Hypothesis Test Calculator based on the asymptotic formulae for the profile likelihood ratio...
RooLinkedListIter is the TIterator implementation for RooLinkedList.
Bool_t isConstant() const
RooCmdArg Constrain(const RooArgSet ¶ms)
virtual Int_t numEntries() const
static RooAbsData * GenerateAsimovDataSinglePdf(const RooAbsPdf &pdf, const RooArgSet &obs, const RooRealVar &weightVar, RooCategory *channelCat=0)