library: libMatrix #include "TDecompLU.h" |
TDecompLU
class description - source file - inheritance tree (.pdf)
protected:
static Bool_t DecomposeLUCrout(TMatrixD& lu, Int_t* index, Double_t& sign, Double_t tol, Int_t& nrZeros)
static Bool_t DecomposeLUGauss(TMatrixD& lu, Int_t* index, Double_t& sign, Double_t tol, Int_t& nrZeros)
virtual const TMatrixDBase& GetDecompMatrix() const
public:
TDecompLU()
TDecompLU(Int_t nrows)
TDecompLU(Int_t row_lwb, Int_t row_upb)
TDecompLU(const TMatrixD& m, Double_t tol = 0.0, Int_t implicit = 1)
TDecompLU(const TDecompLU& another)
virtual ~TDecompLU()
static TClass* Class()
virtual Bool_t Decompose()
virtual void Det(Double_t& d1, Double_t& d2)
const TMatrixD& GetLU() const
const TMatrixD GetMatrix() const
virtual Int_t GetNcols() const
virtual Int_t GetNrows() const
void Invert(TMatrixD& inv)
TMatrixD Invert()
static Bool_t InvertLU(TMatrixD& a, Double_t tol, Double_t* det = 0)
virtual TClass* IsA() const
TDecompLU& operator=(const TDecompLU& source)
virtual void Print(Option_t* opt) const
virtual void SetMatrix(const TMatrixD& a)
virtual void ShowMembers(TMemberInspector& insp, char* parent)
virtual Bool_t Solve(TVectorD& b)
virtual TVectorD Solve(const TVectorD& b, Bool_t& ok)
virtual Bool_t Solve(TMatrixDColumn& b)
virtual void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
virtual Bool_t TransSolve(TVectorD& b)
virtual TVectorD TransSolve(const TVectorD& b, Bool_t& ok)
virtual Bool_t TransSolve(TMatrixDColumn& b)
protected:
Int_t fImplicitPivot control to determine implicit row scale before
Int_t fNIndex size of row permutation index
Int_t* fIndex [fNIndex] row permutation index
Double_t fSign = +/- 1 reflecting even/odd row permutations, resp.
TMatrixD fLU decomposed matrix so that a = l u where
LU Decomposition class
Decompose a general n x n matrix A into P A = L U
where P is a permutation matrix, L is unit lower triangular and U
is upper triangular.
L is stored in the strict lower triangular part of the matrix fLU.
The diagonal elements of L are unity and are not stored.
U is stored in the diagonal and upper triangular part of the matrix
fU.
P is stored in the index array fIndex : j = fIndex[i] indicates that
row j and row i should be swapped .
fSign gives the sign of the permutation, (-1)^n, where n is the
number of interchanges in the permutation.
The decomposition fails if a diagonal element of abs(fLU) is == 0,
The matrix fUL is made invalid
TDecompLU()
TDecompLU(Int_t nrows)
TDecompLU(Int_t row_lwb,Int_t row_upb)
TDecompLU(const TMatrixD &a,Double_t tol,Int_t implicit)
TDecompLU(const TDecompLU &another) : TDecompBase(another)
Bool_t Decompose()
const TMatrixD GetMatrix()
Reconstruct the original matrix using the decomposition parts
void SetMatrix(const TMatrixD &a)
Bool_t Solve(TVectorD &b)
Solve Ax=b assuming the LU form of A is stored in fLU, but assume b has *not*
been transformed. Solution returned in b.
Bool_t Solve(TMatrixDColumn &cb)
Solve Ax=b assuming the LU form of A is stored in fLU, but assume b has *not*
been transformed. Solution returned in b.
Bool_t TransSolve(TVectorD &b)
Solve A^T x=b assuming the LU form of A^T is stored in fLU, but assume b has *not*
been transformed. Solution returned in b.
Bool_t TransSolve(TMatrixDColumn &cb)
Solve A^T x=b assuming the LU form of A^T is stored in fLU, but assume b has *not*
been transformed. Solution returned in b.
void Det(Double_t &d1,Double_t &d2)
void Invert(TMatrixD &inv)
For a matrix A(m,m), its inverse A_inv is defined as A * A_inv = A_inv * A = unit
(m x m) Ainv is returned .
TMatrixD Invert()
For a matrix A(m,n), its inverse A_inv is defined as A * A_inv = A_inv * A = unit
(n x m) Ainv is returned .
void Print(Option_t *opt) const
Bool_t DecomposeLUCrout(TMatrixD &lu,Int_t *index,Double_t &sign,
Double_t tol,Int_t &nrZeros)
Crout/Doolittle algorithm of LU decomposing a square matrix, with implicit partial
pivoting. The decomposition is stored in fLU: U is explicit in the upper triag
and L is in multiplier form in the subdiagionals .
Row permutations are mapped out in fIndex. fSign, used for calculating the
determinant, is +/- 1 for even/odd row permutations. .
Bool_t DecomposeLUGauss(TMatrixD &lu,Int_t *index,Double_t &sign,
Double_t tol,Int_t &nrZeros)
LU decomposition using Gaussain Elimination with partial pivoting (See Golub &
Van Loan, Matrix Computations, Algorithm 3.4.1) of a square matrix .
The decomposition is stored in fLU: U is explicit in the upper triag and L is in
multiplier form in the subdiagionals . Row permutations are mapped out in fIndex.
fSign, used for calculating the determinant, is +/- 1 for even/odd row permutations.
Since this algorithm uses partial pivoting without scaling like in Crout/Doolitle.
it is somewhat faster but less precise .
Bool_t InvertLU(TMatrixD &lu,Double_t tol,Double_t *det)
Calculate matrix inversion through in place forward/backward substitution
Inline Functions
void ~TDecompLU()
const TMatrixDBase& GetDecompMatrix() const
Int_t GetNrows() const
Int_t GetNcols() const
const TMatrixD& GetLU() const
Bool_t Solve(TMatrixDColumn& b)
Bool_t TransSolve(TMatrixDColumn& b)
TDecompLU& operator=(const TDecompLU& source)
TClass* Class()
TClass* IsA() const
void ShowMembers(TMemberInspector& insp, char* parent)
void Streamer(TBuffer& b)
void StreamerNVirtual(TBuffer& b)
Last update: root/matrix:$Name: $:$Id: TDecompLU.cxx,v 1.18 2004/12/07 19:11:26 brun Exp $
Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.