// @(#)root/matrix:$Name:  $:$Id: TDecompLU.cxx,v 1.18 2004/12/07 19:11:26 brun Exp $
// Authors: Fons Rademakers, Eddy Offermann  Dec 2003

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

#include "TDecompLU.h"

ClassImp(TDecompLU)

///////////////////////////////////////////////////////////////////////////
//                                                                       //
// LU Decomposition class                                                //
//                                                                       //
// Decompose  a general n x n matrix A into P A = L U                    //
//                                                                       //
// where P is a permutation matrix, L is unit lower triangular and U     //
// is upper triangular.                                                  //
// L is stored in the strict lower triangular part of the matrix fLU.    //
// The diagonal elements of L are unity and are not stored.              //
// U is stored in the diagonal and upper triangular part of the matrix   //
// fU.                                                                   //
// P is stored in the index array fIndex : j = fIndex[i] indicates that  //
// row j and row i should be swapped .                                   //
//                                                                       //
// fSign gives the sign of the permutation, (-1)^n, where n is the       //
// number of interchanges in the permutation.                            //
//                                                                       //
// The decomposition fails if a diagonal element of abs(fLU) is == 0,    //
// The matrix fUL is made invalid                                        //
//                                                                       //
///////////////////////////////////////////////////////////////////////////

//______________________________________________________________________________
 TDecompLU::TDecompLU()
{
  fSign = 0.0;
  fNIndex = 0;
  fIndex = 0;
  fImplicitPivot = 0;
}

//______________________________________________________________________________
 TDecompLU::TDecompLU(Int_t nrows)
{
  fSign = 1.0;
  fNIndex = nrows;
  fIndex = new Int_t[fNIndex];
  memset(fIndex,0,fNIndex*sizeof(Int_t));
  fImplicitPivot = 0;
  fLU.ResizeTo(nrows,nrows);
}

//______________________________________________________________________________
 TDecompLU::TDecompLU(Int_t row_lwb,Int_t row_upb)
{
  const Int_t nrows = row_upb-row_lwb+1;
  fSign = 1.0;
  fNIndex = nrows;
  fIndex = new Int_t[fNIndex];
  memset(fIndex,0,fNIndex*sizeof(Int_t));
  fRowLwb = row_lwb;
  fColLwb = row_lwb;
  fImplicitPivot = 0;
  fLU.ResizeTo(nrows,nrows);
}

//______________________________________________________________________________
 TDecompLU::TDecompLU(const TMatrixD &a,Double_t tol,Int_t implicit)
{
  Assert(a.IsValid());

  if (a.GetNrows() != a.GetNcols() || a.GetRowLwb() != a.GetColLwb()) {
    Error("TDecompLU(const TMatrixD &","matrix should be square");
    return;
  }

  SetBit(kMatrixSet);
  fCondition = a.Norm1();
  fImplicitPivot = implicit;
  fTol = a.GetTol();
  if (tol > 0)
    fTol = tol;

  fSign = 1.0;
  fNIndex = a.GetNcols();
  fIndex = new Int_t[fNIndex];
  memset(fIndex,0,fNIndex*sizeof(Int_t));

  fRowLwb = a.GetRowLwb();
  fColLwb = a.GetColLwb();
  fLU.ResizeTo(a);
  fLU = a;
}

//______________________________________________________________________________
 TDecompLU::TDecompLU(const TDecompLU &another) : TDecompBase(another)
{
  fNIndex = 0;
  fIndex  = 0;
  *this = another;
}

//______________________________________________________________________________
 Bool_t TDecompLU::Decompose()
{
  if ( !TestBit(kMatrixSet) )
    return kFALSE;

  Int_t nrZeros = 0;
  Bool_t ok;
  if (fImplicitPivot)
    ok = DecomposeLUCrout(fLU,fIndex,fSign,fTol,nrZeros);
  else
    ok = DecomposeLUGauss(fLU,fIndex,fSign,fTol,nrZeros);

  if (!ok) SetBit(kSingular);
  else     SetBit(kDecomposed);

  return ok;
}

//______________________________________________________________________________
 const TMatrixD TDecompLU::GetMatrix()
{
// Reconstruct the original matrix using the decomposition parts

  if (TestBit(kSingular)) {
    TMatrixD tmp; tmp.Invalidate();
    return tmp;
  }
  if ( !TestBit(kDecomposed) ) {
    if (!Decompose()) {
      TMatrixD tmp; tmp.Invalidate();
      return tmp;
    }
  }

  TMatrixD L = fLU;
  TMatrixD U = fLU;
  Double_t * const pU = U.GetMatrixArray();
  Double_t * const pL = L.GetMatrixArray();
  const Int_t n = fLU.GetNcols();
  for (Int_t irow = 0; irow < n; irow++) {
    const Int_t off_row = irow*n;
    for (Int_t icol = 0; icol < n; icol++) {
      if (icol > irow)      pL[off_row+icol] = 0.;
      else if (icol < irow) pU[off_row+icol] = 0.;
      else                  pL[off_row+icol] = 1.;
    }
  }

  TMatrixD a = L*U;

  // swap rows

  Double_t * const pA = a.GetMatrixArray();
  for (Int_t i = n-1; i >= 0; i--) {
    const Int_t j = fIndex[i];
    if (j != i) {
      const Int_t off_j = j*n;
      const Int_t off_i = i*n;
      for (Int_t k = 0; k < n; k++) {
        const Double_t tmp = pA[off_j+k];
        pA[off_j+k] = pA[off_i+k];
        pA[off_i+k] = tmp;
      }
    }
  }

  return a;
}

//______________________________________________________________________________
 void TDecompLU::SetMatrix(const TMatrixD &a)
{
  Assert(a.IsValid());

  ResetStatus();
  if (a.GetNrows() != a.GetNcols() || a.GetRowLwb() != a.GetColLwb()) {
    Error("TDecompLU(const TMatrixD &","matrix should be square");
    return;
  }

  SetBit(kMatrixSet);
  fCondition = a.Norm1();

  fSign = 1.0;
  if (fNIndex != a.GetNcols()) {
    fNIndex = a.GetNcols();
    delete [] fIndex;
    fIndex = new Int_t[fNIndex];
    memset(fIndex,0,fNIndex*sizeof(Int_t));
  }

  fRowLwb = a.GetRowLwb();
  fColLwb = a.GetColLwb();
  fLU.ResizeTo(a);
  fLU = a;
}

//______________________________________________________________________________
 Bool_t TDecompLU::Solve(TVectorD &b)
{
// Solve Ax=b assuming the LU form of A is stored in fLU, but assume b has *not*
// been transformed.  Solution returned in b.

  Assert(b.IsValid());
  if (TestBit(kSingular)) {
    b.Invalidate();
    return kFALSE;
  }
  if ( !TestBit(kDecomposed) ) {
    if (!Decompose()) {
      b.Invalidate();
      return kFALSE;
    }
  }

  if (fLU.GetNrows() != b.GetNrows() || fLU.GetRowLwb() != b.GetLwb()) {
    Error("Solve(TVectorD &","vector and matrix incompatible");
    b.Invalidate();
    return kFALSE;
  }

  const Int_t n = fLU.GetNrows();

  const Double_t *pLU = fLU.GetMatrixArray();
        Double_t *pb  = b.GetMatrixArray();

  Int_t i;

  // Check for zero diagonals
  for (i = 0; i < n ; i++) {
    const Int_t off_i = i*n;
    if (TMath::Abs(pLU[off_i+i]) < fTol) {
      Error("Solve(TVectorD &b)","LU[%d,%d]=%.4e < %.4e",i,i,pLU[off_i+i],fTol);
      b.Invalidate();
      return kFALSE;
    }
  }

  // Transform b allowing for leading zeros
  Int_t nonzero = -1;
  for (i = 0; i < n; i++) {
    const Int_t off_i = i*n;
    const Int_t iperm = fIndex[i];
    Double_t r = pb[iperm];
    pb[iperm] = pb[i];
    if (nonzero >= 0)
      for (Int_t j = nonzero; j < i; j++)
        r -= pLU[off_i+j]*pb[j];
    else if (r != 0.0)
      nonzero = i;
    pb[i] = r;
  }

  // Backward substitution
  for (i = n-1; i >= 0; i--) {
    const Int_t off_i = i*n;
    Double_t r = pb[i];
    for (Int_t j = i+1; j < n; j++)
      r -= pLU[off_i+j]*pb[j];
    pb[i] = r/pLU[off_i+i];
  }

  return kTRUE;
}

//______________________________________________________________________________
 Bool_t TDecompLU::Solve(TMatrixDColumn &cb)
{
// Solve Ax=b assuming the LU form of A is stored in fLU, but assume b has *not*
// been transformed.  Solution returned in b.

  TMatrixDBase *b = const_cast<TMatrixDBase *>(cb.GetMatrix());
  Assert(b->IsValid());
  if (TestBit(kSingular)) {
    b->Invalidate();
    return kFALSE;
  }
  if ( !TestBit(kDecomposed) ) {
    if (!Decompose()) {
      b->Invalidate();
      return kFALSE;
    }
  }

  if (fLU.GetNrows() != b->GetNrows() || fLU.GetRowLwb() != b->GetRowLwb()) {
    Error("Solve(TMatrixDColumn &","vector and matrix incompatible");
    b->Invalidate();
    return kFALSE;
  }

  const Int_t     n   = fLU.GetNrows();
  const Double_t *pLU = fLU.GetMatrixArray();

  Int_t i;

  // Check for zero diagonals
  for (i = 0; i < n ; i++) {
    const Int_t off_i = i*n;
    if (TMath::Abs(pLU[off_i+i]) < fTol) {
      Error("Solve(TMatrixDColumn &cb)","LU[%d,%d]=%.4e < %.4e",i,i,pLU[off_i+i],fTol);
      b->Invalidate();
      return kFALSE;
    }
  }

        Double_t *pcb = cb.GetPtr();
  const Int_t     inc = cb.GetInc();

  // Transform b allowing for leading zeros
  Int_t nonzero = -1;
  for (i = 0; i < n; i++) {
    const Int_t off_i  = i*n;
    const Int_t off_i2 = i*inc;
    const Int_t iperm = fIndex[i];
    const Int_t off_iperm = iperm*inc;
    Double_t r = pcb[off_iperm];
    pcb[off_iperm] = pcb[off_i2];
    if (nonzero >=0)
      for (Int_t j = nonzero; j <= i-1; j++)
        r -= pLU[off_i+j]*pcb[j*inc];
    else if (r != 0.0)
      nonzero = i;
    pcb[off_i2] = r;
  }

  // Backward substitution
  for (i = n-1; i >= 0; i--) {
    const Int_t off_i  = i*n;
    const Int_t off_i2 = i*inc;
    Double_t r = pcb[off_i2];
    for (Int_t j = i+1; j < n; j++)
      r -= pLU[off_i+j]*pcb[j*inc];
    pcb[off_i2] = r/pLU[off_i+i];
  }

  return kTRUE;
}


//______________________________________________________________________________
 Bool_t TDecompLU::TransSolve(TVectorD &b)
{
// Solve A^T x=b assuming the LU form of A^T is stored in fLU, but assume b has *not*
// been transformed.  Solution returned in b.

  Assert(b.IsValid());
  if (TestBit(kSingular)) {
    b.Invalidate();
    return kFALSE;
  }
  if ( !TestBit(kDecomposed) ) {
    if (!Decompose()) {
      b.Invalidate();
      return kFALSE;
    }
  }

  if (fLU.GetNrows() != b.GetNrows() || fLU.GetRowLwb() != b.GetLwb()) {
    Error("TransSolve(TVectorD &","vector and matrix incompatible");
    b.Invalidate();
    return kFALSE;
  }

  const Int_t n = fLU.GetNrows();

  const Double_t *pLU = fLU.GetMatrixArray();
        Double_t *pb  = b.GetMatrixArray();

  Int_t i;

  // Check for zero diagonals
  for (i = 0; i < n ; i++) {
    const Int_t off_i = i*n;
    if (TMath::Abs(pLU[off_i+i]) < fTol) {
      Error("TransSolve(TVectorD &b)","LU[%d,%d]=%.4e < %.4e",i,i,pLU[off_i+i],fTol);
      b.Invalidate();
      return kFALSE;
    }
  }

  // Forward Substitution
  for (i = 0; i < n; i++) {
    const Int_t off_i = i*n;
    Double_t r = pb[i];
    for (Int_t j = 0; j < i ; j++) {
      const Int_t off_j = j*n;
      r -= pLU[off_j+i]*pb[j];
    }
    pb[i] = r/pLU[off_i+i];
  }

  // Transform b allowing for leading zeros
  Int_t nonzero = -1;
  for (i = n-1 ; i >= 0; i--) {
    Double_t r = pb[i];
    if (nonzero >= 0) {
      for (Int_t j = i+1; j <= nonzero; j++) {
        const Int_t off_j = j*n;
        r -= pLU[off_j+i]*pb[j];
      }
    } else if (r != 0.0)
      nonzero = i;
    const Int_t iperm = fIndex[i];
    pb[i]     = pb[iperm];
    pb[iperm] = r;
  }

  return kTRUE;
}

//______________________________________________________________________________
 Bool_t TDecompLU::TransSolve(TMatrixDColumn &cb)
{
// Solve A^T x=b assuming the LU form of A^T is stored in fLU, but assume b has *not*
// been transformed.  Solution returned in b.

  TMatrixDBase *b = const_cast<TMatrixDBase *>(cb.GetMatrix());
  Assert(b->IsValid());
  if (TestBit(kSingular)) {
    b->Invalidate();
    return kFALSE;
  }
  if ( !TestBit(kDecomposed) ) {
    if (!Decompose()) {
      b->Invalidate();
      return kFALSE;
    }
  }

  if (fLU.GetNrows() != b->GetNrows() || fLU.GetRowLwb() != b->GetRowLwb()) {
    Error("TransSolve(TMatrixDColumn &","vector and matrix incompatible");
    b->Invalidate();
    return kFALSE;
  }

  const Int_t n   = fLU.GetNrows();
  const Int_t lwb = fLU.GetRowLwb();

  const Double_t *pLU = fLU.GetMatrixArray();

  Int_t i;

  // Check for zero diagonals
  for (i = 0; i < n ; i++) {
    const Int_t off_i = i*n;
    if (TMath::Abs(pLU[off_i+i]) < fTol) {
      Error("TransSolve(TMatrixDColumn &cb)","LU[%d,%d]=%.4e < %.4e",i,i,pLU[off_i+i],fTol);
      b->Invalidate();
      return kFALSE;
    }
  }

  // Forward Substitution
  for (i = 0; i < n; i++) {
    const Int_t off_i = i*n;
    Double_t r = cb(i+lwb);
    for (Int_t j = 0; j < i ; j++) {
      const Int_t off_j = j*n;
      r -= pLU[off_j+i]*cb(j+lwb);
    }
    cb(i+lwb) = r/pLU[off_i+i];
  }

  // Transform b allowing for leading zeros
  Int_t nonzero = -1;
  for (i = n-1 ; i >= 0; i--) {
    Double_t r = cb(i+lwb);
    if (nonzero >= 0) {
      for (Int_t j = i+1; j <= nonzero; j++) {
        const Int_t off_j = j*n;
        r -= pLU[off_j+i]*cb(j+lwb);
      }
    } else if (r != 0.0)
      nonzero = i;
    const Int_t iperm = fIndex[i];
    cb(i+lwb)     = cb(iperm+lwb);
    cb(iperm+lwb) = r;
  }

  return kTRUE;
}

//______________________________________________________________________________
 void TDecompLU::Det(Double_t &d1,Double_t &d2)
{
  if ( !TestBit(kDetermined) ) {
    if ( !TestBit(kDecomposed) )
      Decompose();
    TDecompBase::Det(d1,d2);
    fDet1 *= fSign;
    SetBit(kDetermined);
  }
  d1 = fDet1;
  d2 = fDet2;
}

//______________________________________________________________________________
 void TDecompLU::Invert(TMatrixD &inv)
{
  // For a matrix A(m,m), its inverse A_inv is defined as A * A_inv = A_inv * A = unit
  // (m x m) Ainv is returned .

  if (inv.GetNrows()  != GetNrows()  || inv.GetNcols()  != GetNcols() ||
      inv.GetRowLwb() != GetRowLwb() || inv.GetColLwb() != GetColLwb()) {
    Error("Invert(TMatrixD &","Input matrix has wrong shape");
    inv.Invalidate();
    return;
  }

  inv.UnitMatrix();
  MultiSolve(inv);
}

//______________________________________________________________________________
 TMatrixD TDecompLU::Invert()
{
  // For a matrix A(m,n), its inverse A_inv is defined as A * A_inv = A_inv * A = unit
  // (n x m) Ainv is returned .

  const Int_t rowLwb = GetRowLwb();
  const Int_t rowUpb = rowLwb+GetNrows()-1;

  TMatrixD inv(rowLwb,rowUpb,rowLwb,rowUpb);
  inv.UnitMatrix();
  MultiSolve(inv);

  return inv;
}

//______________________________________________________________________________
 void TDecompLU::Print(Option_t *opt) const
{
  TDecompBase::Print(opt);
  printf("fImplicitPivot = %d\n",fImplicitPivot);
  printf("fSign          = %f\n",fSign);
  printf("fIndex:\n");
  for (Int_t i = 0; i < fNIndex; i++)
    printf("[%d] = %d\n",i,fIndex[i]);
  fLU.Print("fLU");
}

//______________________________________________________________________________
TDecompLU &TDecompLU::operator=(const TDecompLU &source)
{
  if (this != &source) {
    TDecompBase::operator=(source);
    fLU.ResizeTo(source.fLU);
    fLU   = source.fLU;
    fSign = source.fSign;
    fImplicitPivot = source.fImplicitPivot;
    if (fNIndex != source.fNIndex) {
      if (fIndex)
        delete [] fIndex;
      fNIndex = source.fNIndex;
      fIndex = new Int_t[fNIndex];
    }
    memcpy(fIndex,source.fIndex,fNIndex*sizeof(Int_t));
  }
  return *this;
}

//______________________________________________________________________________
 Bool_t TDecompLU::DecomposeLUCrout(TMatrixD &lu,Int_t *index,Double_t &sign,
                                   Double_t tol,Int_t &nrZeros)
{
// Crout/Doolittle algorithm of LU decomposing a square matrix, with implicit partial
// pivoting.  The decomposition is stored in fLU: U is explicit in the upper triag
// and L is in multiplier form in the subdiagionals .
// Row permutations are mapped out in fIndex. fSign, used for calculating the
// determinant, is +/- 1 for even/odd row permutations. .

  const Int_t     n     = lu.GetNcols();
        Double_t *pLU   = lu.GetMatrixArray();

  Double_t work[kWorkMax];
  Bool_t isAllocated = kFALSE;
  Double_t *scale = work;
  if (n > kWorkMax) {
    isAllocated = kTRUE;
    scale = new Double_t[n];
  }

  sign    = 1.0;
  nrZeros = 0;
  // Find implicit scaling factors for each row
  for (Int_t i = 0; i < n ; i++) {
    const Int_t off_i = i*n;
    Double_t max = 0.0;
    for (Int_t j = 0; j < n; j++) {
      const Double_t tmp = TMath::Abs(pLU[off_i+j]);
      if (tmp > max)
        max = tmp;
    }
    scale[i] = (max == 0.0 ? 0.0 : 1.0/max);
  }

  for (Int_t j = 0; j < n; j++) {
    const Int_t off_j = j*n;
    Int_t i;
    // Run down jth column from top to diag, to form the elements of U.
    for (i = 0; i < j; i++) {
      const Int_t off_i = i*n;
      Double_t r = pLU[off_i+j];
      for (Int_t k = 0; k < i; k++) {
        const Int_t off_k = k*n;
        r -= pLU[off_i+k]*pLU[off_k+j];
      }
      pLU[off_i+j] = r;
    }

    // Run down jth subdiag to form the residuals after the elimination of
    // the first j-1 subdiags.  These residuals divided by the appropriate
    // diagonal term will become the multipliers in the elimination of the jth.
    // subdiag. Find fIndex of largest scaled term in imax.

    Double_t max = 0.0;
    Int_t imax = 0;
    for (i = j; i < n; i++) {
      const Int_t off_i = i*n;
      Double_t r = pLU[off_i+j];
      for (Int_t k = 0; k < j; k++) {
        const Int_t off_k = k*n;
        r -= pLU[off_i+k]*pLU[off_k+j];
      }
      pLU[off_i+j] = r;
      const Double_t tmp = scale[i]*TMath::Abs(r);
      if (tmp >= max) {
        max = tmp;
        imax = i;
      }
    }

    // Permute current row with imax
    if (j != imax) {
      const Int_t off_imax = imax*n;
      for (Int_t k = 0; k < n; k++ ) {
        const Double_t tmp = pLU[off_imax+k];
        pLU[off_imax+k] = pLU[off_j+k];
        pLU[off_j+k]    = tmp;
      }
      sign = -sign;
      scale[imax] = scale[j];
    }
    index[j] = imax;

    // If diag term is not zero divide subdiag to form multipliers.
    if (pLU[off_j+j] != 0.0) {
      if (TMath::Abs(pLU[off_j+j]) < tol)
        nrZeros++;
      if (j != n-1) {
        const Double_t tmp = 1.0/pLU[off_j+j];
        for (Int_t i = j+1; i < n; i++) {
          const Int_t off_i = i*n;
          pLU[off_i+j] *= tmp;
        }
      }
    } else
      return kFALSE;
  }

  if (isAllocated)
    delete [] scale;

  return kTRUE;
}

//______________________________________________________________________________
 Bool_t TDecompLU::DecomposeLUGauss(TMatrixD &lu,Int_t *index,Double_t &sign,
                                   Double_t tol,Int_t &nrZeros)
{
// LU decomposition using Gaussain Elimination with partial pivoting (See Golub &
// Van Loan, Matrix Computations, Algorithm 3.4.1) of a square matrix .
// The decomposition is stored in fLU: U is explicit in the upper triag and L is in
// multiplier form in the subdiagionals . Row permutations are mapped out in fIndex.
// fSign, used for calculating the determinant, is +/- 1 for even/odd row permutations.
// Since this algorithm uses partial pivoting without scaling like in Crout/Doolitle.
// it is somewhat faster but less precise .

  const Int_t     n   = lu.GetNcols();
        Double_t *pLU = lu.GetMatrixArray();

  sign    = 1.0;
  nrZeros = 0;

  index[n-1] = n-1;
  for (Int_t j = 0; j < n-1; j++) {
    const Int_t off_j = j*n;

    // Find maximum in the j-th column

    Double_t max = TMath::Abs(pLU[off_j+j]);
    Int_t i_pivot = j;

    for (Int_t i = j+1; i < n; i++) {
      const Int_t off_i = i*n;
      const Double_t LUij = TMath::Abs(pLU[off_i+j]);

      if (LUij > max) {
        max = LUij;
        i_pivot = i;
      }
    }

    if (i_pivot != j) {
      const Int_t off_ipov = i_pivot*n;
      for (Int_t k = 0; k < n; k++ ) {
        const Double_t tmp = pLU[off_ipov+k];
        pLU[off_ipov+k] = pLU[off_j+k];
        pLU[off_j+k]    = tmp;
      }
      sign = -sign;
    }
    index[j] = i_pivot;

    const Double_t LUjj = pLU[off_j+j];

    if (LUjj != 0.0) {
      if (TMath::Abs(LUjj) < tol)
        nrZeros++;
      for (Int_t i = j+1; i < n; i++) {
        const Int_t off_i = i*n;
        const Double_t LUij = pLU[off_i+j]/LUjj;
        pLU[off_i+j] = LUij;

        for (Int_t k = j+1; k < n; k++) {
          const Double_t LUik = pLU[off_i+k];
          const Double_t LUjk = pLU[off_j+k];
          pLU[off_i+k] = LUik-LUij*LUjk;
        }
      }
    } else
      return kFALSE;
  }

  return kTRUE;
}

//______________________________________________________________________________
 Bool_t TDecompLU::InvertLU(TMatrixD &lu,Double_t tol,Double_t *det)
{
  // Calculate matrix inversion through in place forward/backward substitution

  if (lu.GetNrows() != lu.GetNcols() || lu.GetRowLwb() != lu.GetColLwb()) {
    ::Error("TDecompLU::InvertLU","matrix should be square");
    lu.Invalidate();
    return kFALSE;
  }

  const Int_t     n   = lu.GetNcols();
        Double_t *pLU = lu.GetMatrixArray();

  Int_t worki[kWorkMax];
  Bool_t isAllocatedI = kFALSE;
  Int_t *index = worki;
  if (n > kWorkMax) {
    isAllocatedI = kTRUE;
    index = new Int_t[n];
  }

  Double_t sign = 1.0;
  Int_t nrZeros = 0;
  if (!DecomposeLUCrout(lu,index,sign,tol,nrZeros) || nrZeros > 0) {
    if (isAllocatedI)
      delete [] index;
    lu.Invalidate();
    return kFALSE;
  }

  if (det) {
    Double_t d1;
    Double_t d2;
    const TVectorD diagv = TMatrixDDiag_const(lu);
    DiagProd(diagv,tol,d1,d2);
    d1 *= sign;
    if (TMath::Abs(d2) > 52.0)
      ::Warning("TDecompLU::InvertLU","Determinant under/over-flows double: det= %.4f 2^%.0f",d1,d2);
    *det = d1*TMath::Power(2.0,d2);
  }

  //  Form inv(U).

  Int_t j;

  for (j = 0; j < n; j++) {
    const Int_t off_j = j*n;

    pLU[off_j+j] = 1./pLU[off_j+j];
    const Double_t LU_jj = -pLU[off_j+j];

//  Compute elements 0:j-1 of j-th column.

    Double_t *pX = pLU+j;
    Int_t k;
    for (k = 0; k <= j-1; k++) {
      const Int_t off_k = k*n;
      if ( pX[off_k] != 0.0 ) {
        const Double_t tmp = pX[off_k];
        for (Int_t i = 0; i <= k-1; i++) {
          const Int_t off_i = i*n;
          pX[off_i] += tmp*pLU[off_i+k];
        }
        pX[off_k] *= pLU[off_k+k];
      }
    }
    for (k = 0; k <= j-1; k++) {
      const Int_t off_k = k*n;
      pX[off_k] *= LU_jj;
    }
  }

  // Solve the equation inv(A)*L = inv(U) for inv(A).

  Double_t workd[kWorkMax];
  Bool_t isAllocatedD = kFALSE;
  Double_t *pWorkd = workd;
  if (n > kWorkMax) {
    isAllocatedD = kTRUE;
    pWorkd = new Double_t[n];
  }

  for (j = n-1; j >= 0; j--) {

  // Copy current column j of L to WORK and replace with zeros.
    for (Int_t i = j+1; i < n; i++) {
      const Int_t off_i = i*n;
      pWorkd[i] = pLU[off_i+j];
      pLU[off_i+j] = 0.0;
    }

  // Compute current column of inv(A).

    if (j < n-1) {
      const Double_t *mp = pLU+j+1;     // Matrix row ptr
            Double_t *tp = pLU+j;       // Target vector ptr

      for (Int_t irow = 0; irow < n; irow++) {
        Double_t sum = 0.;
        const Double_t *sp = pWorkd+j+1; // Source vector ptr
        for (Int_t icol = 0; icol < n-1-j ; icol++)
          sum += *mp++ * *sp++;
        *tp = -sum + *tp;
        mp += j+1;
        tp += n;
      }
    }
  }

  if (isAllocatedD)
    delete [] pWorkd;

  // Apply column interchanges.
  for (j = n-1; j >= 0; j--) {
    const Int_t jperm = index[j];
    if (jperm != j) {
      for (Int_t i = 0; i < n; i++) {
        const Int_t off_i = i*n;
        const Double_t tmp = pLU[off_i+jperm];
        pLU[off_i+jperm] = pLU[off_i+j];
        pLU[off_i+j]     = tmp;
      }
    }
  }

  if (isAllocatedI)
    delete [] index;

  return kTRUE;
}


ROOT page - Class index - Class Hierarchy - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.