46 std::vector<double> p(3);
59 std::cout <<
"Derivative of function inheriting from IGenFunction f(x) = 2 + 3x + 4x^2 at x = 2" << std::endl;
60 std::cout <<
"Return code: " << der->
Status() << std::endl;
61 std::cout <<
"Result: " << result <<
" +/- " << der->
Error() << std::endl;
62 std::cout <<
"Exact result: " << f1->
Derivative(x0) << std::endl;
63 std::cout <<
"EvalForward: " << der->
EvalForward(*f1, x0) << std::endl;
64 std::cout <<
"EvalBackward: " << der->
EvalBackward(x0, step) << std::endl << std::endl;;
73 std::cout <<
"Derivative of a free function f(x) = x^(3/2) at x = 2" << std::endl;
74 std::cout <<
"EvalCentral: " << der->
EvalCentral(x0) << std::endl;
75 std::cout <<
"EvalForward: " << der->
EvalForward(x0) << std::endl;
76 std::cout <<
"EvalBackward: " << der->
EvalBackward(x0) << std::endl;
78 std::cout <<
"Exact result: " << 1.5*
sqrt(x0) << std::endl << std::endl;
90 std::cout <<
"Derivative of a free function wrapped in a Functor f(x) = x^(3/2) at x = 2" << std::endl;
91 std::cout <<
"EvalCentral: " << der->
Eval( *f3, x0) << std::endl;
93 std::cout <<
"EvalForward: " << der->
EvalForward(x0) << std::endl;
94 std::cout <<
"EvalBackward: " << der->
EvalBackward(x0) << std::endl;
95 std::cout <<
"Exact result: " << 1.5*
sqrt(x0) << std::endl << std::endl;
97 status +=
fabs(der->
Eval( *f3, x0)-1.5*
sqrt(x0)) > ERRORLIMIT;
105 std::cout <<
"Tes a derivator without a function" << std::endl;
106 std::cout << der2.
Eval(1.0) << std::endl;
128 void testDerivPerf() {
131 std::cout <<
"\n\n***************************************************************\n";
132 std::cout <<
"Test derivation performances....\n\n";
135 double p[3] = {2,3,4};
140 double x1 = 0;
double x2 = 10;
141 double dx = (x2-
x1)/
double(n);
146 for (
int i = 0; i <
n; ++i) {
147 double x = x1 + dx*i;
148 s1+= der.EvalCentral(x);
151 std::cout <<
"Time using ROOT::Math::Derivator :\t" << timer.
RealTime() << std::endl;
152 int pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
156 for (
int i = 0; i <
n; ++i) {
158 double x = x1 + dx*i;
159 s1+= der2.EvalForward(x);
162 std::cout <<
"Time using ROOT::Math::Derivator(2):\t" << timer.
RealTime() << std::endl;
163 pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
167 for (
int i = 0; i <
n; ++i) {
168 double x = x1 + dx*i;
172 std::cout <<
"Time using ROOT::Math::Derivator(3):\t" << timer.
RealTime() << std::endl;
173 pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
176 TF1 f2(
"pol",
"pol2",0,10);
181 for (
int i = 0; i <
n; ++i) {
182 double x = x1 + dx*i;
183 s2+=
f2.Derivative(x);
186 std::cout <<
"Time using TF1::Derivative :\t\t" << timer.
RealTime() << std::endl;
187 pr = std::cout.precision(18);
188 std::cout << s2 << std::endl;
189 std::cout.precision(pr);
195 double userFunc(
const double *x,
const double *) {
198 double userFunc1(
double x) {
return userFunc(&x, 0); }
200 double userFunc2(
const double * x) {
return userFunc(x, 0); }
202 void testDerivPerfUser() {
205 std::cout <<
"\n\n***************************************************************\n";
206 std::cout <<
"Test derivation performances - using a User function\n\n";
212 double x1 = 0;
double x2 = 10;
213 double dx = (x2-
x1)/
double(n);
218 for (
int i = 0; i <
n; ++i) {
219 double x = x1 + dx*i;
220 s1+= der.EvalCentral(x);
223 std::cout <<
"Time using ROOT::Math::Derivator :\t" << timer.
RealTime() << std::endl;
224 int pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
228 for (
int i = 0; i <
n; ++i) {
230 double x = x1 + dx*i;
231 s1+= der2.EvalForward(x);
234 std::cout <<
"Time using ROOT::Math::Derivator(2):\t" << timer.
RealTime() << std::endl;
235 pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
239 for (
int i = 0; i <
n; ++i) {
240 double x = x1 + dx*i;
244 std::cout <<
"Time using ROOT::Math::Derivator(3):\t" << timer.
RealTime() << std::endl;
245 pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
248 TF1 f2(
"uf",userFunc,0,10,0);
252 for (
int i = 0; i <
n; ++i) {
253 double x = x1 + dx*i;
254 s2+=
f2.Derivative(x);
257 std::cout <<
"Time using TF1::Derivative :\t\t" << timer.
RealTime() << std::endl;
258 pr = std::cout.precision(18);
259 std::cout << s2 << std::endl;
260 std::cout.precision(pr);
267 for (
int i = 0; i <
n; ++i) {
272 std::cout <<
"Time using ROOT::Math::Derivator Multi:\t" << timer.
RealTime() << std::endl;
273 pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
280 double gausFunc(
const double * x,
const double * p) {
285 void testDerivPerfParam() {
288 std::cout <<
"\n\n***************************************************************\n";
289 std::cout <<
"Test derivation performances - using a Gaussian Param function\n\n";
292 TF1 gaus(
"gaus",gausFunc,-10,10,3);
293 double params[3] = {10,1.,1.};
294 gaus.SetParameters(params);
300 double x1 = 0;
double x2 = 10;
301 double dx = (x2-
x1)/
double(n);
305 for (
int i = 0; i <
n; ++i) {
306 double x = x1 + dx*i;
313 std::cout <<
"Time using ROOT::Math::Derivator (1D) :\t" << timer.
RealTime() << std::endl;
314 int pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
321 for (
int i = 0; i <
n; ++i) {
328 std::cout <<
"Time using ROOT::Math::Derivator(ND):\t" << timer.
RealTime() << std::endl;
329 pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
339 for (
int i = 0; i <
n; ++i) {
341 gaus.GradientPar(xx,g,1
E-8);
347 std::cout <<
"Time using TF1::ParamGradient:\t\t" << timer.
RealTime() << std::endl;
348 pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
363 testDerivPerfParam();
virtual void SetParameters(const Double_t *params)
Double_t RealTime()
Stop the stopwatch (if it is running) and return the realtime (in seconds) passed between the start a...
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
Class for computing numerical derivative of a function.
double(* FP)(double, void *)
double Eval(double x, double h=1E-8) const
Computes the numerical derivative of a function f at a point x.
Class to Wrap a ROOT Function class (like TF1) in a IParamFunction interface of one dimensions to be ...
double EvalCentral(double x, double h=1E-8) const
Computes the numerical derivative at a point x using an adaptive central difference algorithm with a ...
Template class to wrap any C++ callable object which takes one argument i.e.
double normal_pdf(double x, double sigma=1, double x0=0)
Probability density function of the normal (Gaussian) distribution.
void Stop()
Stop the stopwatch.
double pow(double, double)
double Error() const
return the estimate of the absolute error of the last derivative calculation
VecExpr< UnaryOp< Fabs< T >, VecExpr< A, T, D >, T >, T, D > fabs(const VecExpr< A, T, D > &rhs)
virtual void SetParameters(const double *p)
Set the parameter values.
void SetFunction(const IGenFunction &f)
Set the function for calculating the derivatives.
double myfunc(double x, void *)
double EvalForward(double x, double h=1E-8) const
Computes the numerical derivative at a point x using an adaptive forward difference algorithm with a ...
double Derivative(double x) const
Return the derivative of the function at a point x Use the private method DoDerivative.
Parametric Function class describing polynomials of order n.
double EvalBackward(double x, double h=1E-8) const
Computes the numerical derivative at a point x using an adaptive backward difference algorithm with a...
static const double x1[5]
Template class to wrap any C++ callable object implementing operator() (const double * x) in a multi-...
double f2(const double *x)
Functor1D class for one-dimensional functions.
WrappedParamFunction class to wrap any multi-dimensional function pbject implementing the operator()(...
int Status() const
return the error status of the last derivative calculation