12 #ifndef ROOT_TEveVector
13 #define ROOT_TEveVector
24 template <
typename TT>
31 template <
typename OO>
39 operator const TT*()
const {
return &
fX; }
40 operator TT*() {
return &
fX; }
45 const TT*
Arr()
const {
return &
fX; }
52 void Set(
const Float_t*
v) { fX = v[0]; fY = v[1]; fZ = v[2]; }
54 void Set(TT
x, TT
y, TT z) { fX =
x; fY =
y; fZ = z; }
57 template <
typename OO>
68 TT
Mag2()
const {
return fX*fX + fY*fY + fZ*
fZ; }
71 TT
Perp2()
const {
return fX*fX + fY*
fY; }
105 template<
typename TT>
112 template<
typename TT>
115 Float_t ptot =
Mag();
return ptot == 0 ? 1 : fZ/ptot;
119 template<
typename TT>
123 (fY - b.
fY)*(fY - b.
fY) +
124 (fZ - b.
fZ)*(fZ - b.
fZ));
128 template<
typename TT>
131 return ((fX - b.
fX) * (fX - b.
fX) +
132 (fY - b.
fY) * (fY - b.
fY) +
133 (fZ - b.
fZ) * (fZ - b.
fZ));
137 template<
typename TT>
140 return a.
fX*fX + a.
fY*fY + a.
fZ*fZ;
144 template<
typename TT>
148 r.
fX = fY * a.
fZ - fZ * a.
fY;
149 r.
fY = fZ * a.
fX - fX * a.
fZ;
150 r.
fZ = fX * a.
fY - fY * a.
fX;
155 template<
typename TT>
165 template<
typename TT>
175 template<
typename TT>
183 template<
typename TT>
191 template<
typename TT>
199 template<
typename TT>
211 template <
typename TT>
220 template <
typename OO>
222 template <
typename OO>
224 template <
typename OO>
236 using TP::operator+=;
237 using TP::operator-=;
247 template<
typename TT>
254 template<
typename TT>
261 template<
typename TT>
268 template<
typename TT>
279 template <
typename TT>
286 template <
typename OO>
294 operator const TT*()
const {
return &
fX; }
295 operator TT*() {
return &
fX; }
304 const TT*
Arr()
const {
return &
fX; }
311 template <
typename OO>
340 template<
typename TT>
343 return fX == 0.0 && fY == 0.0 ? 0.0 :
TMath::ATan2(fY, fX);
347 template<
typename TT>
351 (fY - b.
fY)*(fY - b.
fY));
355 template<
typename TT>
358 return ((fX - b.
fX) * (fX - b.
fX) +
359 (fY - b.
fY) * (fY - b.
fY));
363 template<
typename TT>
366 return a.
fX*fX + a.
fY*fY;
370 template<
typename TT>
373 return fX * a.
fY - fY * a.
fX;
377 template<
typename TT>
386 template<
typename TT>
395 template<
typename TT>
403 template<
typename TT>
411 template<
typename TT>
419 template<
typename TT>
void Set(const TEveVector2T< OO > &v)
TT Dot(const TEveVector2T &a) const
TEveVectorT & operator*=(TT s)
TEveVector4T< Float_t > TEveVector4
TEveVectorT & operator-=(const TEveVectorT &v)
void Set(const Float_t *v)
TEveVector4T< Double_t > TEveVector4D
TEveVectorT(TT x, TT y, TT z)
T Mag(const SVector< T, D > &rhs)
Vector magnitude (Euclidian norm) Compute : .
TT & operator[](Int_t idx)
TT Distance(const TEveVector2T &v) const
TEveVector4T(TT x, TT y, TT z, TT t=0)
void OrthoNormBase(TEveVectorT &a, TEveVectorT &b) const
Set vectors a and b to be normal to this and among themselves, both of length 1.
TT Dot(const TEveVectorT &a) const
ClassDefNV(TEveVector4T, 1)
void Set(const Double_t *v)
TEveVector2T< Float_t > TEveVector2
TEveVector4T & operator+=(const TEveVector4T &v)
void Set(const Double_t *v)
void Set(const TEveVectorT< OO > &v)
TEveVector4T(const Double_t *v)
TT Distance(const TEveVectorT &v) const
Minimal, templated four-vector.
Minimal, templated three-vector.
ClassDefNV(TEveVectorT, 2)
void Dump() const
Dump to stdout as "(x, y, z)\n".
TEveVectorT< Double_t > TEveVectorD
void Dump() const
Dump to stdout as "(x, y, z; t)\n".
void Set(TT x, TT y, TT z)
TEveVectorT Orthogonal() const
Returns an orthogonal vector (not normalized).
Double_t ATan2(Double_t, Double_t)
TEveVectorT Cross(const TEveVectorT &a) const
ClassDefNV(TEveVector2T, 1)
TEveVector2T & operator*=(TT s)
TEveVector4T(const TEveVectorT< OO > &v, Float_t t)
TT Eta() const
Calculate eta of the point, pretending it's a momentum vector.
TEveVectorT< TT > operator*(const TEveVectorT< TT > &a, TT b)
TEveVector4T & operator*=(TT s)
TEveVectorT< TT > operator-(const TEveVectorT< TT > &a, const TEveVectorT< TT > &b)
TEveVectorT(const Double_t *v)
Double_t length(const TVector2 &v)
void Dump() const
Dump to stdout as "(x, y)\n".
TEveVector2T & Mult(const TEveVector2T &a, TT af)
TEveVector4T(const Float_t *v)
Minimal, templated two-vector.
TEveVectorT & Mult(const TEveVectorT &a, TT af)
void Normalize(TT length=1)
Normalize the vector to length if current length is non-zero.
TEveVector2T(const TEveVector2T< OO > &v)
TEveVector2T< Double_t > TEveVector2D
TEveVector2T(const Double_t *v)
void Set(const Float_t *v)
TEveVector2T(const Float_t *v)
TEveVectorT< TT > operator+(const TEveVectorT< TT > &a, const TEveVectorT< TT > &b)
TT SquareDistance(const TEveVector2T &v) const
TEveVectorT(const Float_t *v)
TEveVectorT & operator+=(const TEveVectorT &v)
TEveVector4T(const TEveVector4T< OO > &v)
TEveVectorT< Float_t > TEveVector
TEveVector4T & operator-=(const TEveVector4T &v)
TEveVectorT(const TEveVectorT< OO > &v)
TEveVectorT< Float_t > TEveVectorF
TEveVector2T & Sub(const TEveVector2T &p, const TEveVector2T &q)
TT operator[](Int_t idx) const
TEveVector4T< Float_t > TEveVector4F
TT Normalize(TT length=1)
Normalize the vector to length if current length is non-zero.
TEveVector2T & operator+=(const TEveVector2T &v)
TEveVector2T & operator-=(const TEveVector2T &v)
TEveVectorT & Sub(const TEveVectorT &a, const TEveVectorT &b)
TEveVector2T< Float_t > TEveVector2F
double Perp(const Vector1 &v, const Vector2 &u)
Find the magnitude of the vector component of v perpendicular to the given direction of u...
TEveVector4T(const TEveVectorT< OO > &v)
Double_t Sqrt(Double_t x)
TT operator[](Int_t idx) const
TT Cross(const TEveVector2T &a) const
TT SquareDistance(const TEveVectorT &v) const