72 template <
class FitObject>
75 template <
class FitObject>
78 template <
class FitObject>
88 Error(
"Fit",
"function may not be null pointer");
92 Error(
"Fit",
"function is zombie");
98 Error(
"Fit",
"function %s has illegal number of parameters = %d", f1->
GetName(), npar);
104 Error(
"Fit",
"function %s dimension, %d, is greater than fit object dimension, %d",
109 Error(
"Fit",
"function %s dimension, %d, is smaller than fit object dimension -1, %d",
121 Double_t fxmin, fymin, fzmin, fxmax, fymax, fzmax;
122 f1.
GetRange(fxmin, fymin, fzmin, fxmax, fymax, fzmax);
131 template<
class FitObject>
144 if (iret != 0)
return iret;
150 if (fitOption.
Integral)
Info(
"Fit",
"Ignore Integral option. Model function dimension is less than the data object dimension");
151 if (fitOption.
Like)
Info(
"Fit",
"Ignore Likelihood option. Model function dimension is less than the data object dimension");
159 if (special==299+npar) linear =
kTRUE;
165 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
167 std::shared_ptr<ROOT::Fit::Fitter> fitter(
new ROOT::Fit::Fitter(std::static_pointer_cast<ROOT::Fit::FitResult>(tfr) ) );
196 printf(
" range in x = [%f,%f] \n",x1,x2);
203 if (fitdata->Size() == 0 ) {
204 Warning(
"Fit",
"Fit data is empty ");
209 printf(
"HFit:: data size is %d \n",fitdata->Size());
210 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
211 if (fitdata->NDim() == 1)
printf(
" x[%d] = %f - value = %f \n", i,*(fitdata->Coords(i)),fitdata->Value(i) );
221 if (special != 0 && !fitOption.
Bound && !linear) {
234 if ( (linear || fitOption.
Gradient) )
242 if (
int(fitdata->NDim()) == hdim -1 ) fitConfig.
SetNormErrors(
true);
250 for (
int i = 0; i < npar; ++i) {
256 if (plow*pup != 0 && plow >= pup) {
259 else if (plow < pup ) {
274 double step = 0.1 * (pup - plow);
276 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
277 step = (pup - parSettings.
Value() ) / 2;
278 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
279 step = (parSettings.
Value() - plow ) / 2;
308 std::string
type =
"Robust";
334 if (fitOption.
Like)
printf(
"do likelihood fit...\n");
335 if (linear)
printf(
"do linear fit...\n");
336 printf(
"do now fit...\n");
351 if (fitOption.
User && userFcn)
352 fitok = fitter->FitFCN( userFcn );
353 else if (fitOption.
Like) {
355 bool weight = ((fitOption.
Like & 2) == 2);
357 bool extended = ((fitOption.
Like & 4 ) != 4 );
359 fitok = fitter->LikelihoodFit(*fitdata, extended);
362 fitok = fitter->Fit(*fitdata);
365 if ( !fitok && !fitOption.
Quiet )
366 Warning(
"Fit",
"Abnormal termination of minimization.");
372 iret = fitResult.
Status();
396 if (!fitOption.
Quiet) {
397 if (fitter->GetMinimizer() && fitConfig.
MinimizerType() ==
"Minuit" &&
399 fitter->GetMinimizer()->PrintResults();
404 fitResult.
Print(std::cout);
417 bcfitter->
SetFCN(userFcn);
438 name = name + h1->GetName() +
"-" + f1->
GetName();
440 title += h1->GetTitle();
442 tfr->SetTitle(title);
457 if (range.
Size(0) == 0) {
468 if (range.
Size(1) == 0) {
479 if (range.
Size(2) == 0) {
490 std::cout <<
"xmin,xmax" << xmin <<
" " <<
xmax << std::endl;
509 else if (range.
Size(0) == 0) {
516 double x1 = 0,
x2 = 0, y1 = 0, y2 = 0;
517 g->ComputeRange(x1,y1,
x2,y2);
518 if (x1 < xmin) xmin =
x1;
519 if (
x2 > xmax) xmax =
x2;
531 if (range.
Size(0) == 0) {
536 if (range.
Size(1) == 0) {
549 for (
int i = 0; i < ndim; ++i ) {
550 if ( range.
Size(i) == 0 ) {
557 template<
class FitObject>
563 std::cout <<
"draw and store fit function " << f1->
GetName() << std::endl;
575 std::cout <<
"draw and store fit function " << f1->
GetName()
576 <<
" Range in x = [ " << xmin <<
" , " <<
xmax <<
" ]" << std::endl;
579 TList * funcList = h1->GetListOfFunctions();
581 Error(
"StoreAndDrawFitFunction",
"Function list has not been created - cannot store the fitted function");
589 bool reuseOldFunction =
false;
590 if (delOldFunction) {
593 while ((obj =
next())) {
600 reuseOldFunction =
true;
612 if (!reuseOldFunction) {
613 fnew1 = (
TF1*)f1->IsA()->New();
616 funcList->
Add(fnew1);
626 }
else if (ndim < 3) {
627 if (!reuseOldFunction) {
628 fnew2 = (
TF2*)f1->IsA()->New();
631 funcList->
Add(fnew2);
634 fnew2 =
dynamic_cast<TF2*
>(
f1);
643 if (!reuseOldFunction) {
644 fnew3 = (
TF3*)f1->IsA()->New();
647 funcList->
Add(fnew3);
650 fnew2 =
dynamic_cast<TF3*
>(
f1);
661 if (drawFunction && ndim < 3 && h1->InheritsFrom(
TH1::Class() ) ) {
664 if (!
gPad || (
gPad &&
gPad->GetListOfPrimitives()->FindObject(h1) ==
NULL ) )
677 if (option == 0)
return;
678 if (!option[0])
return;
703 else if (type ==
kGraph) {
711 int start = opt.
Index(
"H=0.");
712 int numpos = start + strlen(
"H=0.");
715 while( (numpos+numlen<len) && isdigit(opt[numpos+numlen]) ) numlen++;
716 TString num = opt(numpos,numlen);
717 opt.
Remove(start+strlen(
"H"),strlen(
"=0.")+numlen);
718 h = atof(num.
Data());
736 if (fitOption.
Like == 1) {
740 if (fitOption.
Like == 2) fitOption.
Like = 6;
741 else fitOption.
Like = 4;
746 if (fitOption.
Chi2 == 1 || fitOption.
PChi2 == 1)
747 Warning(
"Fit",
"Cannot use P or X option in combination of L. Ignore the chi2 option and perform a likelihood fit");
771 Info(
"CheckGraphFitOptions",
"L (Log Likelihood fit) is an invalid option when fitting a graph. It is ignored");
775 Info(
"CheckGraphFitOptions",
"I (use function integral) is an invalid option when fitting a graph. It is ignored");
787 std::shared_ptr<ROOT::Fit::UnBinData> fitdata(data);
790 printf(
"tree data size is %d \n",fitdata->Size());
791 for (
unsigned int i = 0; i < fitdata->Size(); ++i) {
792 if (fitdata->NDim() == 1)
printf(
" x[%d] = %f \n", i,*(fitdata->Coords(i) ) );
795 if (fitdata->Size() == 0 ) {
796 Warning(
"Fit",
"Fit data is empty ");
801 std::shared_ptr<TFitResult> tfr(
new TFitResult() );
807 unsigned int dim = fitdata->NDim();
822 for (
int i = 0; i < npar; ++i) {
827 if (plow*pup != 0 && plow >= pup) {
830 else if (plow < pup ) {
845 double step = 0.1 * (pup - plow);
847 if ( parSettings.
Value() < pup && pup - parSettings.
Value() < 2 * step )
848 step = (pup - parSettings.
Value() ) / 2;
849 else if ( parSettings.
Value() > plow && parSettings.
Value() - plow < 2 * step )
850 step = (parSettings.
Value() - plow ) / 2;
872 if ( (fitOption.
Like & 2) == 2)
875 bool extended = (fitOption.
Like & 1) == 1;
878 fitok = fitter->LikelihoodFit(fitdata, extended);
879 if ( !fitok && !fitOption.
Quiet )
880 Warning(
"UnBinFit",
"Abnormal termination of minimization.");
884 int iret = fitResult.
Status();
907 if (lastFitter)
delete lastFitter;
921 name = name +
"UnBinData-" + fitfunc->
GetName();
925 tfr->SetTitle(title);
940 Warning(
"HFit::FitObject",
"A weighted likelihood fit is requested but histogram is not weighted - do a standard Likelihood fit");
944 return HFit::Fit(h1,f1,foption,moption,goption,range);
951 return HFit::Fit(gr,f1,foption,moption,goption,range);
958 return HFit::Fit(gr,f1,foption,moption,goption,range);
965 return HFit::Fit(gr,f1,foption,moption,goption,range);
970 return HFit::Fit(s1,f1,foption,moption,goption,range);
997 template<
class FitObject>
1008 if (data.
Size() == 0 ) {
1009 Warning(
"Chisquare",
"data set is empty - return -1");
Int_t GetFirst() const
Return first bin on the axis i.e.
const std::string & MinimizerType() const
return type of minimizer package
virtual void SetParameters(const Double_t *params)
void PrintCovMatrix(std::ostream &os) const
print error matrix and correlations
void SetPrintLevel(int level)
set print level
void SetTolerance(double tol)
set the tolerance
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
ClassImp(TSeqCollection) Int_t TSeqCollection TIter next(this)
Return index of object in collection.
TList * GetListOfGraphs() const
const std::vector< double > & Errors() const
parameter errors (return st::vector)
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
virtual void SetMethodCall(TMethodCall *m)
Class to Wrap a ROOT Function class (like TF1) in a IParamMultiFunction interface of multi-dimensions...
TString & ReplaceAll(const TString &s1, const TString &s2)
Double_t GetXmax() const
Returns the X maximum.
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
virtual void SetUserFunc(TObject *userfunc)
virtual Int_t GetDimension() const
unsigned int Ndf() const
Number of degree of freedom.
A TMultiGraph is a collection of TGraph (or derived) objects.
Double_t GetYmax() const
Returns the Y maximum.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
void ToUpper()
Change string to upper case.
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return low edge of bin.
virtual void SetNumberFitPoints(Int_t npfits)
virtual void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
Override setFCN to use the Adapter to Minuit2 FCN interface To set the address of the minimization fu...
Class describing the unbinned data sets (just x coordinates values) of any dimensions.
Backward compatible implementation of TVirtualFitter.
virtual Double_t GetParError(Int_t ipar) const
Return value of parameter number ipar.
virtual Double_t GetBinWidth(Int_t bin) const
Return bin width.
TH1F * GetHistogram() const
Returns a pointer to the histogram used to draw the axis Takes into account the two following cases...
ROOT::Math::MinimizerOptions & MinimizerOptions()
access to the minimizer control parameter (non const method)
LongDouble_t Power(LongDouble_t x, LongDouble_t y)
void SetBit(UInt_t f, Bool_t set)
Set or unset the user status bits as specified in f.
const std::vector< double > & Parameters() const
parameter values (return std::vector)
Double_t GetXmin() const
Returns the X minimum.
unsigned int Size() const
return number of fit points
TFitResultPtr UnBinFit(ROOT::Fit::UnBinData *data, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption)
fit an unbin data set (from tree or from histogram buffer) using a TF1 pointer and fit options...
const char * Data() const
virtual void SetParent(TObject *p=0)
static const double x2[5]
Int_t GetNdimensions() const
int GetDimension(const TH1 *h1)
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O...
virtual void Copy(TObject &f1) const
Copy this F1 to a new F1.
void GetDrawingRange(TH1 *h1, ROOT::Fit::DataRange &range)
if(pyself &&pyself!=Py_None)
void Info(const char *location, const char *msgfmt,...)
void Fix()
fix the parameter
bool NormalizeErrors() const
flag to check if resulting errors are be normalized according to chi2/ndf
virtual Bool_t IsLinear() const
virtual void GetRange(Double_t *xmin, Double_t *xmax) const
Return range of a generic N-D function.
void Error(const char *location, const char *msgfmt,...)
virtual void GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax) const
Return limits for parameter ipar.
void SetLowerLimit(double low)
set a single lower limit
static void SetFitter(TVirtualFitter *fitter, Int_t maxpar=25)
Static function to set an alternative fitter.
int GetDimension(const THnBase *s1)
int CheckFitFunction(const TF1 *f1, int hdim)
void SetMinosErrors(bool on=true)
set Minos erros computation to be performed after fitting
Chi2FCN class for binnned fits using the least square methods.
virtual void SetObjectFit(TObject *obj)
unsigned int Size(unsigned int icoord=0) const
return range size for coordinate icoord (starts from zero) Size == 0 indicates no range is present [-...
void InitGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for gaussian function given the fit data Set the sigma limits for zero top ...
virtual void SetChisquare(Double_t chi2)
void SetMinimizer(const char *type, const char *algo=0)
set minimizer type
void SetStepSize(double err)
set the step size
void FillData(BinData &dv, const TH1 *hist, TF1 *func=0)
fill the data vector from a TH1.
DataOptions : simple structure holding the options on how the data are filled.
Class to manage histogram axis.
A 3-Dim function with parameters.
int Status() const
minimizer status code
Fitter class, entry point for performing all type of fits.
virtual TObject * Remove(TObject *obj)
Remove object from the list.
virtual void SetFitOption(Foption_t option)
Provides an indirection to the TFitResult class and with a semantics identical to a TFitResult pointe...
const ParameterSettings & ParSettings(unsigned int i) const
get the parameter settings for the i-th parameter (const method)
Bool_t TestBit(UInt_t f) const
void FitOptionsMake(const char *option, Foption_t &fitOption)
Double_t GetYmin() const
Returns the Y minimum.
virtual Int_t GetNdim() const
static TVirtualFitter * GetFitter()
static: return the current Fitter
virtual const char * GetName() const
Returns name of object.
virtual Int_t GetSumw2N() const
double Chisquare(const TH1 &h1, TF1 &f1, bool useRange)
compute the chi2 value for an histogram given a function (see TH1::Chisquare for the documentation) ...
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
TAxis * GetAxis(Int_t dim) const
double ComputeChi2(const FitObject &h1, TF1 &f1, bool useRange)
A 2-Dim function with parameters.
void InitExpo(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for an exponential function given the fit data Set the constant and slope a...
void Warning(const char *location, const char *msgfmt,...)
void(* FCNFunc_t)(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
virtual void PrintResults(Int_t level, Double_t amin) const
Print the fit result.
void SetMinimizerOptions(const ROOT::Math::MinimizerOptions &minopt)
set all the minimizer options using class MinimizerOptions
TString & Remove(Ssiz_t pos)
void AddRange(unsigned int icoord, double xmin, double xmax)
add a range [xmin,xmax] for the new coordinate icoord Adding a range does not delete existing one...
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
class containg the result of the fit and all the related information (fitted parameter values...
void GetFunctionRange(const TF1 &f1, ROOT::Fit::DataRange &range)
static const double x1[5]
class describing the range in the coordinates it supports multiple range in a coordinate.
void Init2DGaus(const ROOT::Fit::BinData &data, TF1 *f1)
compute initial parameter for 2D gaussian function given the fit data Set the sigma limits for zero t...
TFitResultPtr Fit(FitObject *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
ClassImp(TMCParticle) void TMCParticle printf(": p=(%7.3f,%7.3f,%9.3f) ;", fPx, fPy, fPz)
void SetWeightCorrection(bool on=true)
apply the weight correction for error matric computation
void Print(std::ostream &os, bool covmat=false) const
print the result and optionaly covariance matrix and correlations
TH1F * GetHistogram() const
Returns a pointer to the histogram used to draw the axis.
virtual Int_t GetNumber() const
void FitOptionsMake(EFitObjectType type, const char *option, Foption_t &fitOption)
Decode list of options into fitOption.
Abstract Base Class for Fitting.
Int_t GetLast() const
Return last bin on the axis i.e.
Mother of all ROOT objects.
virtual Double_t * GetParameters() const
void StoreAndDrawFitFunction(FitObject *h1, TF1 *f1, const ROOT::Fit::DataRange &range, bool, bool, const char *goption)
std::string ToString(const T &val)
Utility function for conversion to strings.
virtual void SetRange(Double_t xmin, Double_t xmax)
Initialize the upper and lower bounds to draw the function.
virtual void Add(TObject *obj)
virtual void SetParErrors(const Double_t *errors)
Set errors for all active parameters when calling this function, the array errors must have at least ...
double Value() const
copy constructor and assignment operators (leave them to the compiler)
TMethodCall * GetMethodCall() const
virtual Bool_t AddToGlobalList(Bool_t on=kTRUE)
Add to global list of functions (gROOT->GetListOfFunctions() ) return previous status (true if the fu...
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
void SetNormErrors(bool on=true)
set the option to normalize the error on the result according to chi2/ndf
void SetUpperLimit(double up)
set a single upper limit
A Graph is a graphics object made of two arrays X and Y with npoints each.
virtual void SetNDF(Int_t ndf)
Set the number of degrees of freedom ndf should be the number of points used in a fit - the number of...
double Chi2() const
Chi2 fit value in case of likelihood must be computed ?
void SetLimits(double low, double up)
set a double side limit, if low == up the parameter is fixed if low > up the limits are removed ...
Multidimensional histogram base.
TFitResultPtr FitObject(TH1 *h1, TF1 *f1, Foption_t &option, const ROOT::Math::MinimizerOptions &moption, const char *goption, ROOT::Fit::DataRange &range)
fitting function for a TH1 (called from TH1::Fit)
const Bool_t kIterBackward
void SetParabErrors(bool on=true)
set parabolic erros
Ssiz_t Index(const char *pat, Ssiz_t i=0, ECaseCompare cmp=kExact) const
Graphics object made of three arrays X, Y and Z with the same number of points each.
bool IsEmpty() const
True if a fit result does not exist (even invalid) with parameter values.
void GetRange(unsigned int icoord, double &xmin, double &xmax) const
get the first range for given coordinate.
virtual Int_t GetNpar() const
void CheckGraphFitOptions(Foption_t &fitOption)
Class describing the configuration of the fit, options and parameter settings using the ROOT::Fit::Pa...
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax)
Save values of function in array fSave.