TMatrixDEigen Eigenvalues and eigenvectors of a real matrix. If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex eigenvalues look like u + iv . . . . . u - iv . . . a + ib . . a - ib . . . x . . . . . y then D looks like u v . . . . -v u . . . . a b -b a . . . x . . . . . y This keeps V a real matrix in both symmetric and non-symmetric cases, and A*V = V*D.
virtual | ~TMatrixDEigen() |
static TClass* | Class() |
const TMatrixD | GetEigenValues() const |
const TVectorD& | GetEigenValuesIm() const |
const TVectorD& | GetEigenValuesRe() const |
const TMatrixD& | GetEigenVectors() const |
virtual TClass* | IsA() const |
TMatrixDEigen& | operator=(const TMatrixDEigen& source) |
virtual void | ShowMembers(TMemberInspector& insp) const |
virtual void | Streamer(TBuffer&) |
void | StreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b) |
TMatrixDEigen() | |
TMatrixDEigen(const TMatrixD& a) | |
TMatrixDEigen(const TMatrixDEigen& another) |
static TMatrixDEigen::(anonymous) | kWorkMax |
Nonsymmetric reduction to Hessenberg form. This is derived from the Algol procedures orthes and ortran, by Martin and Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutines in EISPACK.
Nonsymmetric reduction from Hessenberg to real Schur form. This is derived from the Algol procedure hqr2, by Martin and Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
Sort eigenvalues and corresponding vectors in descending order of Re^2+Im^2 of the complex eigenvalues .
Computes the block diagonal eigenvalue matrix. If the original matrix A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex eigenvalues look like u + iv . . . . . . u - iv . . . . . . a + ib . . . . . . a - ib . . . . . . x . . . . . . y then D looks like u v . . . . -v u . . . . . . a b . . . . -b a . . . . . . x . . . . . . y This keeps V a real matrix in both symmetric and non-symmetric cases, and A*V = V*D. Indexing: If matrix A has the index/shape (rowLwb,rowUpb,rowLwb,rowUpb) each eigen-vector must have the shape (rowLwb,rowUpb) . For convinience, the column index of the eigen-vector matrix also runs from rowLwb to rowUpb so that the returned matrix has also index/shape (rowLwb,rowUpb,rowLwb,rowUpb) .
If matrix A has shape (rowLwb,rowUpb,rowLwb,rowUpb), then each eigen-vector must have an index running between (rowLwb,rowUpb) . For convenience, the column index of the eigen-vector matrix also runs from rowLwb to rowUpb so that the returned matrix has also index/shape (rowLwb,rowUpb,rowLwb,rowUpb) . The same is true for the eigen-value vectors an matrix .
{ return fEigenVectors; }