// @(#)root/minuit2:$Id$ // Authors: M. Winkler, F. James, L. Moneta, A. Zsenei 2003-2005 /********************************************************************** * * * Copyright (c) 2005 LCG ROOT Math team, CERN/PH-SFT * * * **********************************************************************/ #ifndef ROOT_Minuit2_FumiliFCNBase #define ROOT_Minuit2_FumiliFCNBase #include "Minuit2/FCNBase.h" #include <cassert> namespace ROOT { namespace Minuit2 { //____________________________________________________________________________________________ /** Extension of the FCNBase for the Fumili method. Fumili applies only to minimization problems used for fitting. The method is based on a linearization of the model function negleting second derivatives. User needs to provide the model function. The figure-of-merit describing the difference between the model function and the actual measurements has to be implemented by the user in a subclass of FumiliFCNBase. For an example see the FumiliChi2FCN and FumiliStandardChi2FCN classes. @author Andras Zsenei and Lorenzo Moneta, Creation date: 23 Aug 2004 @see <A HREF="http://www.cern.ch/winkler/minuit/tutorial/mntutorial.pdf">MINUIT Tutorial</A> on function minimization, section 5 @see FumiliChi2FCN @see FumiliStandardChi2FCN @ingroup Minuit */ class FumiliFCNBase : public FCNBase { public: /** Default Constructor. Need in this case to create when implementing EvaluateAll the Gradient and Hessian vectors with the right size */ FumiliFCNBase() : fNumberOfParameters(0), fValue(0) {} /** Constructor which initializes the class with the function provided by the user for modeling the data. @param npar the number of parameters */ FumiliFCNBase(unsigned int npar) : fNumberOfParameters(npar), fValue(0), fGradient(std::vector<double>(npar)), fHessian(std::vector<double>(static_cast<int>( 0.5*npar*(npar+1) )) ) {} // FumiliFCNBase(const ParametricFunction& modelFCN) { fModelFunction = &modelFCN; } virtual ~FumiliFCNBase() {} /** Evaluate function Value, Gradient and Hessian using Fumili approximation, for values of parameters p The resul is cached inside and is return from the FumiliFCNBase::Value , FumiliFCNBase::Gradient and FumiliFCNBase::Hessian methods @param par vector of parameters **/ virtual void EvaluateAll( const std::vector<double> & par ) = 0; /** Return cached Value of objective function estimated previously using the FumiliFCNBase::EvaluateAll method **/ virtual double Value() const { return fValue; } /** Return cached Value of function Gradient estimated previously using the FumiliFCNBase::EvaluateAll method **/ virtual const std::vector<double> & Gradient() const { return fGradient; } /** Return Value of the i-th j-th element of the Hessian matrix estimated previously using the FumiliFCNBase::EvaluateAll method @param row row Index of the matrix @param col col Index of the matrix **/ virtual double Hessian(unsigned int row, unsigned int col) const { assert( row < fGradient.size() && col < fGradient.size() ); if(row > col) return fHessian[col+row*(row+1)/2]; else return fHessian[row+col*(col+1)/2]; } /** return number of function variable (parameters) , i.e. function dimension */ virtual unsigned int Dimension() { return fNumberOfParameters; } protected : /** initialize and reset values of gradien and Hessian */ virtual void InitAndReset(unsigned int npar) { fNumberOfParameters = npar; fGradient = std::vector<double>(npar); fHessian = std::vector<double>(static_cast<int>( 0.5*npar*(npar+1) )); } // methods to be used by the derived classes to set the values void SetFCNValue(double value) { fValue = value; } std::vector<double> & Gradient() { return fGradient; } std::vector<double> & Hessian() { return fHessian; } private: unsigned int fNumberOfParameters; double fValue; std::vector<double> fGradient; std::vector<double> fHessian; }; } // namespace Minuit2 } // namespace ROOT #endif // ROOT_Minuit2_FumiliFCNBase