Implementation of the GiniIndexWithLaplace as separation criterion
virtual | ~GiniIndexWithLaplace() |
static TClass* | Class() |
const TString& | TMVA::SeparationBase::GetName() |
virtual Double_t | TMVA::SeparationBase::GetSeparationGain(const Double_t& nSelS, const Double_t& nSelB, const Double_t& nTotS, const Double_t& nTotB) |
virtual Double_t | GetSeparationIndex(const Double_t& s, const Double_t& b) |
TMVA::GiniIndexWithLaplace | GiniIndexWithLaplace() |
TMVA::GiniIndexWithLaplace | GiniIndexWithLaplace(const TMVA::GiniIndexWithLaplace& g) |
virtual TClass* | IsA() const |
TMVA::GiniIndexWithLaplace& | operator=(const TMVA::GiniIndexWithLaplace&) |
TMVA::SeparationBase | TMVA::SeparationBase::SeparationBase() |
TMVA::SeparationBase | TMVA::SeparationBase::SeparationBase(const TMVA::SeparationBase& s) |
virtual void | ShowMembers(TMemberInspector& insp) const |
virtual void | Streamer(TBuffer&) |
void | StreamerNVirtual(TBuffer& ClassDef_StreamerNVirtual_b) |
TString | TMVA::SeparationBase::fName | name of the concrete Separation Index impementation |
Double_t | TMVA::SeparationBase::fPrecisionCut |
Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2 Where: M is a smaple of whatever N elements (events) that belong to K different classes c(k) is the number of elements that belong to class k Laplace's correction to the prob.density c/N --> (c+1)/(N+2) for just Signal and Background classes this then boils down to: Gini(Sample) = 2(s*b+s+b+1)/(s+b+2)^2