ROOT » MATH » MATHCORE » ROOT::Math::GoFTest

class ROOT::Math::GoFTest

Function Members (Methods)

public:
virtual~GoFTest()
Double_tAndersonDarling2SamplesTest(const Char_t* option = "p") const
voidAndersonDarling2SamplesTest(Double_t& pvalue, Double_t& testStat) const
Double_tAndersonDarlingTest(const Char_t* option = "p") const
voidAndersonDarlingTest(Double_t& pvalue, Double_t& testStat) const
ROOT::Math::GoFTestGoFTest(UInt_t sampleSize, const Double_t* sample, ROOT::Math::GoFTest::EDistribution dist = kUndefined)
ROOT::Math::GoFTestGoFTest(UInt_t sample1Size, const Double_t* sample1, UInt_t sample2Size, const Double_t* sample2)
ROOT::Math::GoFTestGoFTest(UInt_t sampleSize, const Double_t* sample, const ROOT::Math::IGenFunction& dist, ROOT::Math::GoFTest::EUserDistribution userDist = kPDF, Double_t xmin = 1, Double_t xmax = 0)
Double_tKolmogorovSmirnov2SamplesTest(const Char_t* option = "p") const
voidKolmogorovSmirnov2SamplesTest(Double_t& pvalue, Double_t& testStat) const
Double_tKolmogorovSmirnovTest(const Char_t* option = "p") const
voidKolmogorovSmirnovTest(Double_t& pvalue, Double_t& testStat) const
Double_toperator()(ROOT::Math::GoFTest::ETestType test = kAD, const Char_t* option = "p") const
voidoperator()(ROOT::Math::GoFTest::ETestType test, Double_t& pvalue, Double_t& testStat) const
voidSetDistribution(ROOT::Math::GoFTest::EDistribution dist)
voidSetUserCDF(const ROOT::Math::IGenFunction& cdf, Double_t xmin = 1, Double_t xmax = 0)
voidSetUserDistribution(const ROOT::Math::IGenFunction& dist, ROOT::Math::GoFTest::EUserDistribution userDist = kPDF, Double_t xmin = 1, Double_t xmax = 0)
voidSetUserDistribution<const ROOT::Math::IBaseFunctionOneDim>(ROOT::Math::const IBaseFunctionOneDim& dist, ROOT::Math::GoFTest::EUserDistribution userDist = kPDF, Double_t xmin = 1, Double_t xmax = 0)
voidSetUserPDF(const ROOT::Math::IGenFunction& pdf, Double_t xmin = 1, Double_t xmax = 0)

Data Members

public:
static ROOT::Math::GoFTest::ETestTypekAD
static ROOT::Math::GoFTest::ETestTypekAD2s
static ROOT::Math::GoFTest::EUserDistributionkCDF
static ROOT::Math::GoFTest::EDistributionkExponential
static ROOT::Math::GoFTest::EDistributionkGaussian
static ROOT::Math::GoFTest::ETestTypekKS
static ROOT::Math::GoFTest::ETestTypekKS2s
static ROOT::Math::GoFTest::EDistributionkLogNormal
static ROOT::Math::GoFTest::EUserDistributionkPDF
static ROOT::Math::GoFTest::EDistributionkUndefined
static ROOT::Math::GoFTest::EDistributionkUserDefined
private:
auto_ptr<ROOT::Math::IGenFunction>fCDF
vector<Double_t>fCombinedSamples
ROOT::Math::GoFTest::EDistributionfDist
Double_tfMean
vector<vector<Double_t> >fSamples
Double_tfSigma
Bool_tfTestSampleFromH0

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

GoFTest(UInt_t sample1Size, const Double_t* sample1, UInt_t sample2Size, const Double_t* sample2)
Constructor for using only with 2-samples tests
GoFTest(UInt_t sampleSize, const Double_t* sample, ROOT::Math::GoFTest::EDistribution dist = kUndefined)
Constructor for using only with 1-sample tests with a specified distribution
GoFTest(UInt_t sampleSize, const Double_t* sample, const ROOT::Math::IGenFunction& dist, ROOT::Math::GoFTest::EUserDistribution userDist = kPDF, Double_t xmin = 1, Double_t xmax = 0)
Templated constructor for using only with 1-sample tests with a user specified distribution
Instantiate(const Double_t* sample, UInt_t sampleSize)
GoFTest(UInt_t sampleSize, const Double_t* sample, const ROOT::Math::IGenFunction& dist, ROOT::Math::GoFTest::EUserDistribution userDist = kPDF, Double_t xmin = 1, Double_t xmax = 0)
Specialization using IGenFunction interface
SetUserDistribution(const ROOT::Math::IGenFunction& dist, ROOT::Math::GoFTest::EUserDistribution userDist = kPDF, Double_t xmin = 1, Double_t xmax = 0)
SetDistributionFunction(const ROOT::Math::IGenFunction& cdf, Bool_t isPDF, Double_t xmin, Double_t xmax)
void SetUserPDF(const ROOT::Math::IGenFunction& pdf, Double_t xmin = 1, Double_t xmax = 0)
Sets the user input distribution as a probability density function for 1-sample tests
void SetUserCDF(const ROOT::Math::IGenFunction& cdf, Double_t xmin = 1, Double_t xmax = 0)
 Sets the user input distribution as a cumulative distribution function for 1-sample tests
      The CDF must return zero

void SetDistribution(ROOT::Math::GoFTest::EDistribution dist)
Sets the distribution for the predefined distribution types
virtual ~GoFTest()
Double_t AndersonDarling2SamplesTest(const Char_t* option = "p") const
  The Anderson-Darling K-Sample Test algorithm is described and taken from
  http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/andeksam.htm
  and described and taken from (1)
  Scholz F.W., Stephens M.A. (1987), K-sample Anderson-Darling Tests, Journal of the American Statistical Association, 82, 918–924. (2-samples variant implemented)
*/ void AndersonDarling2SamplesTest(Double_t& pvalue, Double_t& testStat) const;
Double_t AndersonDarlingTest(const Char_t* option = "p") const
  The Anderson-Darling 1-Sample Test algorithm for a specific distribution is described at
  http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/andedarl.htm
  and described and taken from (2)
  Marsaglia J.C.W., Marsaglia G. (2004), Evaluating the Anderson-Darling Distribution, Journal of Statistical Software, Volume 09, Issue i02.
  and described and taken from (3)
  Lewis P.A.W. (1961), The Annals of Mathematical Statistics, Distribution of the Anderson-Darling Statistic, Volume 32, Number 4, 1118-1124.
*/ void AndersonDarlingTest(Double_t& pvalue, Double_t& testStat) const;
Double_t KolmogorovSmirnov2SamplesTest(const Char_t* option = "p") const
  The Kolmogorov-Smirnov 2-Samples Test algorithm is described at
  http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ks2samp.htm
  and described and taken from
  http://root.cern.ch/root/html/TMath.html#TMath:KolmogorovTest
*/ void KolmogorovSmirnov2SamplesTest(Double_t& pvalue, Double_t& testStat) const;
Double_t KolmogorovSmirnovTest(const Char_t* option = "p") const
  The Kolmogorov-Smirnov 1-Sample Test algorithm for a specific distribution is described at
  http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/kstest.htm
  and described and taken from (4)
  Press W. H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (2007), Numerical Recipes - The Art of Scientific Computing (Third Edition), Cambridge Univerdity Press
*/ void KolmogorovSmirnovTest(Double_t& pvalue, Double_t& testStat) const;
void operator()(ROOT::Math::GoFTest::ETestType test, Double_t& pvalue, Double_t& testStat) const
 The class's unary functions
Double_t operator()(ROOT::Math::GoFTest::ETestType test = kAD, const Char_t* option = "p") const
GoFTest()
GoFTest operator=(ROOT::Math::GoFTest& gof)
void SetCDF()
Double_t LogNormalCDF(Double_t x) const
Double_t GaussianCDF(Double_t x) const
Double_t ExponentialCDF(Double_t x) const
Double_t GetSigmaN(UInt_t N) const
Double_t InterpolatePValues(Double_t dA2, Int_t bin) const
Double_t PValueAD2Samples(Double_t& A2, UInt_t N) const
Double_t PValueAD1Sample(Double_t A2) const
void LogSample()
void SetSamples(vector<const Double_t*> samples, const vector<UInt_t> samplesSizes)
void SetParameters()