Base class for GSL Root-Finding algorithms for one dimensional functions which use function derivatives. For finding the roots users should not use this class directly but instantiate the derived classes, for example ROOT::Math::Roots::Newton for using the Newton algorithm. All the classes defining the alhorithms are defined in the header Math/RootFinderAlgorithm.h They possible types implementing root bracketing algorithms which use function derivatives are: <ul> <li>ROOT::Math::Roots::Newton <li>ROOT::Math::Roots::Secant <li>ROOT::Math::Roots::Steffenson </ul> See also those classes for the documentation. See the GSL <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Root-Finding-Algorithms-using-Derivatives.html"> online manual</A> for information on the GSL Root-Finding algorithms @ingroup RootFinders
virtual | ~GSLRootFinderDeriv() |
ROOT::Math::GSLRootFinderDeriv | GSLRootFinderDeriv() |
ROOT::Math::IRootFinderMethod | ROOT::Math::IRootFinderMethod::IRootFinderMethod() |
ROOT::Math::IRootFinderMethod | ROOT::Math::IRootFinderMethod::IRootFinderMethod(const ROOT::Math::IRootFinderMethod&) |
virtual int | Iterate() |
virtual int | Iterations() const |
virtual const char* | Name() const |
virtual double | Root() const |
virtual bool | SetFunction(const ROOT::Math::IGradFunction& f, double xstart) |
bool | SetFunction(ROOT::Math::GSLRootFinderDeriv::GSLFuncPointer f, ROOT::Math::GSLRootFinderDeriv::GSLFuncPointer df, ROOT::Math::GSLRootFinderDeriv::GSLFdFPointer fdf, void* p, double Root) |
virtual bool | Solve(int maxIter = 100, double absTol = 1.0E-8, double relTol = 1.0E-10) |
virtual int | Status() const |
void | FreeSolver() |
void | SetSolver(ROOT::Math::GSLRootFdFSolver* s) |
ROOT::Math::GSLRootFinderDeriv | GSLRootFinderDeriv(const ROOT::Math::GSLRootFinderDeriv&) |
ROOT::Math::GSLRootFinderDeriv& | operator=(const ROOT::Math::GSLRootFinderDeriv&) |
usually copying is non trivial, so we make this unaccessible
Find the root (return false if failed)