#include "TMath.h"
#include "TError.h"
#include <math.h>
#include <string.h>
#include <algorithm>
#include "Riostream.h"
#include "TString.h"
#include <Math/SpecFuncMathCore.h>
#include <Math/PdfFuncMathCore.h>
#include <Math/ProbFuncMathCore.h>
#if !defined(R__ALPHA) && !defined(R__SOLARIS) && !defined(R__ACC) && !defined(R__FBSD)
NamespaceImp(TMath)
#endif
namespace TMath {
Double_t GamCf(Double_t a,Double_t x);
Double_t GamSer(Double_t a,Double_t x);
Double_t VavilovDenEval(Double_t rlam, Double_t *AC, Double_t *HC, Int_t itype);
void VavilovSet(Double_t rkappa, Double_t beta2, Bool_t mode, Double_t *WCM, Double_t *AC, Double_t *HC, Int_t &itype, Int_t &npt);
}
Long_t TMath::Hypot(Long_t x, Long_t y)
{
return (Long_t) (hypot((Double_t)x, (Double_t)y) + 0.5);
}
Double_t TMath::Hypot(Double_t x, Double_t y)
{
return hypot(x, y);
}
Double_t TMath::ASinH(Double_t x)
{
#if defined(WIN32)
if(x==0.0) return 0.0;
Double_t ax = Abs(x);
return log(x+ax*sqrt(1.+1./(ax*ax)));
#else
return asinh(x);
#endif
}
Double_t TMath::ACosH(Double_t x)
{
#if defined(WIN32)
if(x==0.0) return 0.0;
Double_t ax = Abs(x);
return log(x+ax*sqrt(1.-1./(ax*ax)));
#else
return acosh(x);
#endif
}
Double_t TMath::ATanH(Double_t x)
{
#if defined(WIN32)
return log((1+x)/(1-x))/2;
#else
return atanh(x);
#endif
}
Double_t TMath::Log2(Double_t x)
{
return log(x)/log(2.0);
}
Double_t TMath::DiLog(Double_t x)
{
const Double_t hf = 0.5;
const Double_t pi = TMath::Pi();
const Double_t pi2 = pi*pi;
const Double_t pi3 = pi2/3;
const Double_t pi6 = pi2/6;
const Double_t pi12 = pi2/12;
const Double_t c[20] = {0.42996693560813697, 0.40975987533077105,
-0.01858843665014592, 0.00145751084062268,-0.00014304184442340,
0.00001588415541880,-0.00000190784959387, 0.00000024195180854,
-0.00000003193341274, 0.00000000434545063,-0.00000000060578480,
0.00000000008612098,-0.00000000001244332, 0.00000000000182256,
-0.00000000000027007, 0.00000000000004042,-0.00000000000000610,
0.00000000000000093,-0.00000000000000014, 0.00000000000000002};
Double_t t,h,y,s,a,alfa,b1,b2,b0;
if (x == 1) {
h = pi6;
} else if (x == -1) {
h = -pi12;
} else {
t = -x;
if (t <= -2) {
y = -1/(1+t);
s = 1;
b1= TMath::Log(-t);
b2= TMath::Log(1+1/t);
a = -pi3+hf*(b1*b1-b2*b2);
} else if (t < -1) {
y = -1-t;
s = -1;
a = TMath::Log(-t);
a = -pi6+a*(a+TMath::Log(1+1/t));
} else if (t <= -0.5) {
y = -(1+t)/t;
s = 1;
a = TMath::Log(-t);
a = -pi6+a*(-hf*a+TMath::Log(1+t));
} else if (t < 0) {
y = -t/(1+t);
s = -1;
b1= TMath::Log(1+t);
a = hf*b1*b1;
} else if (t <= 1) {
y = t;
s = 1;
a = 0;
} else {
y = 1/t;
s = -1;
b1= TMath::Log(t);
a = pi6+hf*b1*b1;
}
h = y+y-1;
alfa = h+h;
b1 = 0;
b2 = 0;
for (Int_t i=19;i>=0;i--){
b0 = c[i] + alfa*b1-b2;
b2 = b1;
b1 = b0;
}
h = -(s*(b0-h*b2)+a);
}
return h;
}
Double_t TMath::Erf(Double_t x)
{
return ::ROOT::Math::erf(x);
}
Double_t TMath::Erfc(Double_t x)
{
return ::ROOT::Math::erfc(x);
}
Double_t TMath::ErfInverse(Double_t x)
{
Int_t kMaxit = 50;
Double_t kEps = 1e-14;
Double_t kConst = 0.8862269254527579;
if(TMath::Abs(x) <= kEps) return kConst*x;
Double_t erfi, derfi, y0,y1,dy0,dy1;
if(TMath::Abs(x) < 1.0) {
erfi = kConst*TMath::Abs(x);
y0 = TMath::Erf(0.9*erfi);
derfi = 0.1*erfi;
for (Int_t iter=0; iter<kMaxit; iter++) {
y1 = 1. - TMath::Erfc(erfi);
dy1 = TMath::Abs(x) - y1;
if (TMath::Abs(dy1) < kEps) {if (x < 0) return -erfi; else return erfi;}
dy0 = y1 - y0;
derfi *= dy1/dy0;
y0 = y1;
erfi += derfi;
if(TMath::Abs(derfi/erfi) < kEps) {if (x < 0) return -erfi; else return erfi;}
}
}
return 0;
}
Double_t TMath::ErfcInverse(Double_t x)
{
return - 0.70710678118654752440 * TMath::NormQuantile( 0.5 * x);
}
Double_t TMath::Factorial(Int_t n)
{
if (n <= 0) return 1.;
Double_t x = 1;
Int_t b = 0;
do {
b++;
x *= b;
} while (b != n);
return x;
}
Double_t TMath::Freq(Double_t x)
{
const Double_t c1 = 0.56418958354775629;
const Double_t w2 = 1.41421356237309505;
const Double_t p10 = 2.4266795523053175e+2, q10 = 2.1505887586986120e+2,
p11 = 2.1979261618294152e+1, q11 = 9.1164905404514901e+1,
p12 = 6.9963834886191355e+0, q12 = 1.5082797630407787e+1,
p13 =-3.5609843701815385e-2, q13 = 1;
const Double_t p20 = 3.00459261020161601e+2, q20 = 3.00459260956983293e+2,
p21 = 4.51918953711872942e+2, q21 = 7.90950925327898027e+2,
p22 = 3.39320816734343687e+2, q22 = 9.31354094850609621e+2,
p23 = 1.52989285046940404e+2, q23 = 6.38980264465631167e+2,
p24 = 4.31622272220567353e+1, q24 = 2.77585444743987643e+2,
p25 = 7.21175825088309366e+0, q25 = 7.70001529352294730e+1,
p26 = 5.64195517478973971e-1, q26 = 1.27827273196294235e+1,
p27 =-1.36864857382716707e-7, q27 = 1;
const Double_t p30 =-2.99610707703542174e-3, q30 = 1.06209230528467918e-2,
p31 =-4.94730910623250734e-2, q31 = 1.91308926107829841e-1,
p32 =-2.26956593539686930e-1, q32 = 1.05167510706793207e+0,
p33 =-2.78661308609647788e-1, q33 = 1.98733201817135256e+0,
p34 =-2.23192459734184686e-2, q34 = 1;
Double_t v = TMath::Abs(x)/w2;
Double_t vv = v*v;
Double_t ap, aq, h, hc, y;
if (v < 0.5) {
y=vv;
ap=p13;
aq=q13;
ap = p12 +y*ap;
ap = p11 +y*ap;
ap = p10 +y*ap;
aq = q12 +y*aq;
aq = q11 +y*aq;
aq = q10 +y*aq;
h = v*ap/aq;
hc = 1-h;
} else if (v < 4) {
ap = p27;
aq = q27;
ap = p26 +v*ap;
ap = p25 +v*ap;
ap = p24 +v*ap;
ap = p23 +v*ap;
ap = p22 +v*ap;
ap = p21 +v*ap;
ap = p20 +v*ap;
aq = q26 +v*aq;
aq = q25 +v*aq;
aq = q24 +v*aq;
aq = q23 +v*aq;
aq = q22 +v*aq;
aq = q21 +v*aq;
aq = q20 +v*aq;
hc = TMath::Exp(-vv)*ap/aq;
h = 1-hc;
} else {
y = 1/vv;
ap = p34;
aq = q34;
ap = p33 +y*ap;
ap = p32 +y*ap;
ap = p31 +y*ap;
ap = p30 +y*ap;
aq = q33 +y*aq;
aq = q32 +y*aq;
aq = q31 +y*aq;
aq = q30 +y*aq;
hc = TMath::Exp(-vv)*(c1+y*ap/aq)/v;
h = 1-hc;
}
if (x > 0) return 0.5 +0.5*h;
else return 0.5*hc;
}
Double_t TMath::Gamma(Double_t z)
{
return ::ROOT::Math::tgamma(z);
}
Double_t TMath::Gamma(Double_t a,Double_t x)
{
// P(a, x) = #frac{1}{#Gamma(a) } #int_{0}^{x} t^{a-1} e^{-t} dt
// End_Latex
return ::ROOT::Math::inc_gamma(a, x);
}
Double_t TMath::GamCf(Double_t a,Double_t x)
{
Int_t itmax = 100;
Double_t eps = 3.e-14;
Double_t fpmin = 1.e-30;
if (a <= 0 || x <= 0) return 0;
Double_t gln = LnGamma(a);
Double_t b = x+1-a;
Double_t c = 1/fpmin;
Double_t d = 1/b;
Double_t h = d;
Double_t an,del;
for (Int_t i=1; i<=itmax; i++) {
an = Double_t(-i)*(Double_t(i)-a);
b += 2;
d = an*d+b;
if (Abs(d) < fpmin) d = fpmin;
c = b+an/c;
if (Abs(c) < fpmin) c = fpmin;
d = 1/d;
del = d*c;
h = h*del;
if (Abs(del-1) < eps) break;
}
Double_t v = Exp(-x+a*Log(x)-gln)*h;
return (1-v);
}
Double_t TMath::GamSer(Double_t a,Double_t x)
{
Int_t itmax = 100;
Double_t eps = 3.e-14;
if (a <= 0 || x <= 0) return 0;
Double_t gln = LnGamma(a);
Double_t ap = a;
Double_t sum = 1/a;
Double_t del = sum;
for (Int_t n=1; n<=itmax; n++) {
ap += 1;
del = del*x/ap;
sum += del;
if (TMath::Abs(del) < Abs(sum*eps)) break;
}
Double_t v = sum*Exp(-x+a*Log(x)-gln);
return v;
}
Double_t TMath::BreitWigner(Double_t x, Double_t mean, Double_t gamma)
{
Double_t bw = gamma/((x-mean)*(x-mean) + gamma*gamma/4);
return bw/(2*Pi());
}
Double_t TMath::Gaus(Double_t x, Double_t mean, Double_t sigma, Bool_t norm)
{
if (sigma == 0) return 1.e30;
Double_t arg = (x-mean)/sigma;
if (arg < -39.0 || arg > 39.0) return 0.0;
Double_t res = TMath::Exp(-0.5*arg*arg);
if (!norm) return res;
return res/(2.50662827463100024*sigma);
}
Double_t TMath::Landau(Double_t x, Double_t mu, Double_t sigma, Bool_t norm)
{
if (sigma <= 0) return 0;
Double_t den = ::ROOT::Math::landau_pdf( (x-mu)/sigma );
if (!norm) return den;
return den/sigma;
}
Double_t TMath::LnGamma(Double_t z)
{
return ::ROOT::Math::lgamma(z);
}
Float_t TMath::Normalize(Float_t v[3])
{
Float_t d = Sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
if (d != 0) {
v[0] /= d;
v[1] /= d;
v[2] /= d;
}
return d;
}
Double_t TMath::Normalize(Double_t v[3])
{
Double_t av0 = Abs(v[0]), av1 = Abs(v[1]), av2 = Abs(v[2]);
Double_t amax, foo, bar;
if( av0 >= av1 && av0 >= av2 ) {
amax = av0;
foo = av1;
bar = av2;
}
else if (av1 >= av0 && av1 >= av2) {
amax = av1;
foo = av0;
bar = av2;
}
else {
amax = av2;
foo = av0;
bar = av1;
}
if (amax == 0.0)
return 0.;
Double_t foofrac = foo/amax, barfrac = bar/amax;
Double_t d = amax * Sqrt(1.+foofrac*foofrac+barfrac*barfrac);
v[0] /= d;
v[1] /= d;
v[2] /= d;
return d;
}
Double_t TMath::Poisson(Double_t x, Double_t par)
{
/*
<img src="gif/Poisson.gif">
*/
//End_Html
if (x<0)
return 0;
else if (x == 0.0)
return 1./Exp(par);
else {
Double_t lnpoisson = x*log(par)-par-LnGamma(x+1.);
return Exp(lnpoisson);
}
}
Double_t TMath::PoissonI(Double_t x, Double_t par)
{
/*
<img src="gif/PoissonI.gif">
*/
//End_Html
Int_t ix = Int_t(x);
return Poisson(ix,par);
}
Double_t TMath::Prob(Double_t chi2,Int_t ndf)
{
if (ndf <= 0) return 0;
if (chi2 <= 0) {
if (chi2 < 0) return 0;
else return 1;
}
return ::ROOT::Math::chisquared_cdf_c(chi2,ndf);
}
Double_t TMath::KolmogorovProb(Double_t z)
{
/*
<img src="gif/kolmogorov.gif">
*/
//End_Html
Double_t fj[4] = {-2,-8,-18,-32}, r[4];
const Double_t w = 2.50662827;
const Double_t c1 = -1.2337005501361697;
const Double_t c2 = -11.103304951225528;
const Double_t c3 = -30.842513753404244;
Double_t u = TMath::Abs(z);
Double_t p;
if (u < 0.2) {
p = 1;
} else if (u < 0.755) {
Double_t v = 1./(u*u);
p = 1 - w*(TMath::Exp(c1*v) + TMath::Exp(c2*v) + TMath::Exp(c3*v))/u;
} else if (u < 6.8116) {
r[1] = 0;
r[2] = 0;
r[3] = 0;
Double_t v = u*u;
Int_t maxj = TMath::Max(1,TMath::Nint(3./u));
for (Int_t j=0; j<maxj;j++) {
r[j] = TMath::Exp(fj[j]*v);
}
p = 2*(r[0] - r[1] +r[2] - r[3]);
} else {
p = 0;
}
return p;
}
Double_t TMath::KolmogorovTest(Int_t na, const Double_t *a, Int_t nb, const Double_t *b, Option_t *option)
{
TString opt = option;
opt.ToUpper();
Double_t prob = -1;
if (!a || !b || na <= 2 || nb <= 2) {
Error("KolmogorovTest","Sets must have more than 2 points");
return prob;
}
Double_t rna = na;
Double_t rnb = nb;
Double_t sa = 1./rna;
Double_t sb = 1./rnb;
Double_t rdiff = 0;
Double_t rdmax = 0;
Int_t ia = 0;
Int_t ib = 0;
Bool_t ok = kFALSE;
for (Int_t i=0;i<na+nb;i++) {
if (a[ia] < b[ib]) {
rdiff -= sa;
ia++;
if (ia >= na) {ok = kTRUE; break;}
} else if (a[ia] > b[ib]) {
rdiff += sb;
ib++;
if (ib >= nb) {ok = kTRUE; break;}
} else {
double x = a[ia];
while(a[ia] == x && ia < na) {
rdiff -= sa;
ia++;
}
while(b[ib] == x && ib < nb) {
rdiff += sb;
ib++;
}
if (ia >= na) {ok = kTRUE; break;}
if (ib >= nb) {ok = kTRUE; break;}
}
rdmax = TMath::Max(rdmax,TMath::Abs(rdiff));
}
R__ASSERT(ok);
if (ok) {
rdmax = TMath::Max(rdmax,TMath::Abs(rdiff));
Double_t z = rdmax * TMath::Sqrt(rna*rnb/(rna+rnb));
prob = TMath::KolmogorovProb(z);
}
if (opt.Contains("D")) {
printf(" Kolmogorov Probability = %g, Max Dist = %g\n",prob,rdmax);
}
if(opt.Contains("M")) return rdmax;
else return prob;
}
Double_t TMath::Voigt(Double_t xx, Double_t sigma, Double_t lg, Int_t r)
{
if ((sigma < 0 || lg < 0) || (sigma==0 && lg==0)) {
return 0;
}
if (sigma == 0) {
return lg * 0.159154943 / (xx*xx + lg*lg /4);
}
if (lg == 0) {
return 0.39894228 / sigma * TMath::Exp(-xx*xx / (2*sigma*sigma));
}
Double_t x, y, k;
x = xx / sigma / 1.41421356;
y = lg / 2 / sigma / 1.41421356;
Double_t r0, r1;
if (r < 2) r = 2;
if (r > 5) r = 5;
r0=1.51 * exp(1.144 * (Double_t)r);
r1=1.60 * exp(0.554 * (Double_t)r);
const Double_t rrtpi = 0.56418958;
Double_t y0, y0py0, y0q;
y0 = 1.5;
y0py0 = y0 + y0;
y0q = y0 * y0;
Double_t c[6] = { 1.0117281, -0.75197147, 0.012557727, 0.010022008, -0.00024206814, 0.00000050084806};
Double_t s[6] = { 1.393237, 0.23115241, -0.15535147, 0.0062183662, 0.000091908299, -0.00000062752596};
Double_t t[6] = { 0.31424038, 0.94778839, 1.5976826, 2.2795071, 3.0206370, 3.8897249};
int j;
int rg1, rg2, rg3;
Double_t abx, xq, yq, yrrtpi;
Double_t xlim0, xlim1, xlim2, xlim3, xlim4;
Double_t a0=0, d0=0, d2=0, e0=0, e2=0, e4=0, h0=0, h2=0, h4=0, h6=0;
Double_t p0=0, p2=0, p4=0, p6=0, p8=0, z0=0, z2=0, z4=0, z6=0, z8=0;
Double_t xp[6], xm[6], yp[6], ym[6];
Double_t mq[6], pq[6], mf[6], pf[6];
Double_t d, yf, ypy0, ypy0q;
rg1 = 1;
rg2 = 1;
rg3 = 1;
yq = y * y;
yrrtpi = y * rrtpi;
xlim0 = r0 - y;
xlim1 = r1 - y;
xlim3 = 3.097 * y - 0.45;
xlim2 = 6.8 - y;
xlim4 = 18.1 * y + 1.65;
if ( y <= 1e-6 ) {
xlim1 = xlim0;
xlim2 = xlim0;
}
abx = fabs(x);
xq = abx * abx;
if ( abx > xlim0 ) {
k = yrrtpi / (xq + yq);
} else if ( abx > xlim1 ) {
if ( rg1 != 0 ) {
rg1 = 0;
a0 = yq + 0.5;
d0 = a0*a0;
d2 = yq + yq - 1.0;
}
d = rrtpi / (d0 + xq*(d2 + xq));
k = d * y * (a0 + xq);
} else if ( abx > xlim2 ) {
if ( rg2 != 0 ) {
rg2 = 0;
h0 = 0.5625 + yq * (4.5 + yq * (10.5 + yq * (6.0 + yq)));
h2 = -4.5 + yq * (9.0 + yq * ( 6.0 + yq * 4.0));
h4 = 10.5 - yq * (6.0 - yq * 6.0);
h6 = -6.0 + yq * 4.0;
e0 = 1.875 + yq * (8.25 + yq * (5.5 + yq));
e2 = 5.25 + yq * (1.0 + yq * 3.0);
e4 = 0.75 * h6;
}
d = rrtpi / (h0 + xq * (h2 + xq * (h4 + xq * (h6 + xq))));
k = d * y * (e0 + xq * (e2 + xq * (e4 + xq)));
} else if ( abx < xlim3 ) {
if ( rg3 != 0 ) {
rg3 = 0;
z0 = 272.1014 + y * (1280.829 + y *
(2802.870 + y *
(3764.966 + y *
(3447.629 + y *
(2256.981 + y *
(1074.409 + y *
(369.1989 + y *
(88.26741 + y *
(13.39880 + y)
))))))));
z2 = 211.678 + y * (902.3066 + y *
(1758.336 + y *
(2037.310 + y *
(1549.675 + y *
(793.4273 + y *
(266.2987 + y *
(53.59518 + y * 5.0)
))))));
z4 = 78.86585 + y * (308.1852 + y *
(497.3014 + y *
(479.2576 + y *
(269.2916 + y *
(80.39278 + y * 10.0)
))));
z6 = 22.03523 + y * (55.02933 + y *
(92.75679 + y *
(53.59518 + y * 10.0)
));
z8 = 1.496460 + y * (13.39880 + y * 5.0);
p0 = 153.5168 + y * (549.3954 + y *
(919.4955 + y *
(946.8970 + y *
(662.8097 + y *
(328.2151 + y *
(115.3772 + y *
(27.93941 + y *
(4.264678 + y * 0.3183291)
)))))));
p2 = -34.16955 + y * (-1.322256+ y *
(124.5975 + y *
(189.7730 + y *
(139.4665 + y *
(56.81652 + y *
(12.79458 + y * 1.2733163)
)))));
p4 = 2.584042 + y * (10.46332 + y *
(24.01655 + y *
(29.81482 + y *
(12.79568 + y * 1.9099744)
)));
p6 = -0.07272979 + y * (0.9377051 + y *
(4.266322 + y * 1.273316));
p8 = 0.0005480304 + y * 0.3183291;
}
d = 1.7724538 / (z0 + xq * (z2 + xq * (z4 + xq * (z6 + xq * (z8 + xq)))));
k = d * (p0 + xq * (p2 + xq * (p4 + xq * (p6 + xq * p8))));
} else {
ypy0 = y + y0;
ypy0q = ypy0 * ypy0;
k = 0.0;
for (j = 0; j <= 5; j++) {
d = x - t[j];
mq[j] = d * d;
mf[j] = 1.0 / (mq[j] + ypy0q);
xm[j] = mf[j] * d;
ym[j] = mf[j] * ypy0;
d = x + t[j];
pq[j] = d * d;
pf[j] = 1.0 / (pq[j] + ypy0q);
xp[j] = pf[j] * d;
yp[j] = pf[j] * ypy0;
}
if ( abx <= xlim4 ) {
for (j = 0; j <= 5; j++) {
k = k + c[j]*(ym[j]+yp[j]) - s[j]*(xm[j]-xp[j]) ;
}
} else {
yf = y + y0py0;
for ( j = 0; j <= 5; j++) {
k = k + (c[j] *
(mq[j] * mf[j] - y0 * ym[j])
+ s[j] * yf * xm[j]) / (mq[j]+y0q)
+ (c[j] * (pq[j] * pf[j] - y0 * yp[j])
- s[j] * yf * xp[j]) / (pq[j]+y0q);
}
k = y * k + exp( -xq );
}
}
return k / 2.506628 / sigma;
}
Bool_t TMath::RootsCubic(const Double_t coef[4],Double_t &a, Double_t &b, Double_t &c)
{
Bool_t complex = kFALSE;
Double_t r,s,t,p,q,d,ps3,ps33,qs2,u,v,tmp,lnu,lnv,su,sv,y1,y2,y3;
a = 0;
b = 0;
c = 0;
if (coef[3] == 0) return complex;
r = coef[2]/coef[3];
s = coef[1]/coef[3];
t = coef[0]/coef[3];
p = s - (r*r)/3;
ps3 = p/3;
q = (2*r*r*r)/27.0 - (r*s)/3 + t;
qs2 = q/2;
ps33 = ps3*ps3*ps3;
d = ps33 + qs2*qs2;
if (d>=0) {
complex = kTRUE;
d = TMath::Sqrt(d);
u = -qs2 + d;
v = -qs2 - d;
tmp = 1./3.;
lnu = TMath::Log(TMath::Abs(u));
lnv = TMath::Log(TMath::Abs(v));
su = TMath::Sign(1.,u);
sv = TMath::Sign(1.,v);
u = su*TMath::Exp(tmp*lnu);
v = sv*TMath::Exp(tmp*lnv);
y1 = u + v;
y2 = -y1/2;
y3 = ((u-v)*TMath::Sqrt(3.))/2;
tmp = r/3;
a = y1 - tmp;
b = y2 - tmp;
c = y3;
} else {
Double_t phi,cphi,phis3,c1,c2,c3,pis3;
ps3 = -ps3;
ps33 = -ps33;
cphi = -qs2/TMath::Sqrt(ps33);
phi = TMath::ACos(cphi);
phis3 = phi/3;
pis3 = TMath::Pi()/3;
c1 = TMath::Cos(phis3);
c2 = TMath::Cos(pis3 + phis3);
c3 = TMath::Cos(pis3 - phis3);
tmp = TMath::Sqrt(ps3);
y1 = 2*tmp*c1;
y2 = -2*tmp*c2;
y3 = -2*tmp*c3;
tmp = r/3;
a = y1 - tmp;
b = y2 - tmp;
c = y3 - tmp;
}
return complex;
}
void TMath::Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted, Int_t *index, Int_t type)
{
if (type<1 || type>9){
printf("illegal value of type\n");
return;
}
Int_t *ind = 0;
Bool_t isAllocated = kFALSE;
if (!isSorted){
if (index) ind = index;
else {
ind = new Int_t[n];
isAllocated = kTRUE;
}
}
for (Int_t i=0; i<nprob; i++){
Double_t nppm = 0;
Double_t gamma = 0;
Int_t j = 0;
if (type < 4 ){
if (type == 3)
nppm = n*prob[i]-0.5;
else
nppm = n*prob[i];
j = TMath::FloorNint(nppm);
if (type == 1)
gamma = ( (nppm -j) > j*TMath::Limits<Double_t>::Epsilon() ) ? 1 : 0;
else if (type == 2)
gamma = ( (nppm -j) > j*TMath::Limits<Double_t>::Epsilon() ) ? 1 : 0.5;
else if (type == 3)
gamma = ( TMath::Abs(nppm -j) <= j*TMath::Limits<Double_t>::Epsilon() && TMath::Even(j) ) ? 0 : 1;
}
else {
double a = 0;
double b = 0;
if (type == 4) { a = 0; b = 1; }
else if (type == 5) { a = 0.5; b = 0.5; }
else if (type == 6) { a = 0.; b = 0.; }
else if (type == 7) { a = 1.; b = 1.; }
else if (type == 8) { a = 1./3.; b = a; }
else if (type == 9) { a = 3./8.; b = a; }
double eps = 4 * TMath::Limits<Double_t>::Epsilon();
nppm = a + prob[i] * ( n + 1 -a -b);
j = TMath::FloorNint(nppm + eps);
gamma = nppm - j;
if (gamma < eps) gamma = 0;
}
int first = (j > 0 && j <=n) ? j-1 : ( j <=0 ) ? 0 : n-1;
int second = (j > 0 && j < n) ? j : ( j <=0 ) ? 0 : n-1;
Double_t xj, xjj;
if (isSorted){
xj = x[first];
xjj = x[second];
} else {
xj = TMath::KOrdStat(n, x, first, ind);
xjj = TMath::KOrdStat(n, x, second, ind);
}
quantiles[i] = (1-gamma)*xj + gamma*xjj;
}
if (isAllocated)
delete [] ind;
}
void TMath::BubbleHigh(Int_t Narr, Double_t *arr1, Int_t *arr2)
{
if (Narr <= 0) return;
double *localArr1 = new double[Narr];
int *localArr2 = new int[Narr];
int iEl;
int iEl2;
for(iEl = 0; iEl < Narr; iEl++) {
localArr1[iEl] = arr1[iEl];
localArr2[iEl] = iEl;
}
for (iEl = 0; iEl < Narr; iEl++) {
for (iEl2 = Narr-1; iEl2 > iEl; --iEl2) {
if (localArr1[iEl2-1] < localArr1[iEl2]) {
double tmp = localArr1[iEl2-1];
localArr1[iEl2-1] = localArr1[iEl2];
localArr1[iEl2] = tmp;
int tmp2 = localArr2[iEl2-1];
localArr2[iEl2-1] = localArr2[iEl2];
localArr2[iEl2] = tmp2;
}
}
}
for (iEl = 0; iEl < Narr; iEl++) {
arr2[iEl] = localArr2[iEl];
}
delete [] localArr2;
delete [] localArr1;
}
void TMath::BubbleLow(Int_t Narr, Double_t *arr1, Int_t *arr2)
{
if (Narr <= 0) return;
double *localArr1 = new double[Narr];
int *localArr2 = new int[Narr];
int iEl;
int iEl2;
for (iEl = 0; iEl < Narr; iEl++) {
localArr1[iEl] = arr1[iEl];
localArr2[iEl] = iEl;
}
for (iEl = 0; iEl < Narr; iEl++) {
for (iEl2 = Narr-1; iEl2 > iEl; --iEl2) {
if (localArr1[iEl2-1] > localArr1[iEl2]) {
double tmp = localArr1[iEl2-1];
localArr1[iEl2-1] = localArr1[iEl2];
localArr1[iEl2] = tmp;
int tmp2 = localArr2[iEl2-1];
localArr2[iEl2-1] = localArr2[iEl2];
localArr2[iEl2] = tmp2;
}
}
}
for (iEl = 0; iEl < Narr; iEl++) {
arr2[iEl] = localArr2[iEl];
}
delete [] localArr2;
delete [] localArr1;
}
ULong_t TMath::Hash(const void *txt, Int_t ntxt)
{
return TString::Hash(txt,ntxt);
}
ULong_t TMath::Hash(const char *txt)
{
return Hash(txt, Int_t(strlen(txt)));
}
Double_t TMath::BesselI0(Double_t x)
{
const Double_t p1=1.0, p2=3.5156229, p3=3.0899424,
p4=1.2067492, p5=0.2659732, p6=3.60768e-2, p7=4.5813e-3;
const Double_t q1= 0.39894228, q2= 1.328592e-2, q3= 2.25319e-3,
q4=-1.57565e-3, q5= 9.16281e-3, q6=-2.057706e-2,
q7= 2.635537e-2, q8=-1.647633e-2, q9= 3.92377e-3;
const Double_t k1 = 3.75;
Double_t ax = TMath::Abs(x);
Double_t y=0, result=0;
if (ax < k1) {
Double_t xx = x/k1;
y = xx*xx;
result = p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7)))));
} else {
y = k1/ax;
result = (TMath::Exp(ax)/TMath::Sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))));
}
return result;
}
Double_t TMath::BesselK0(Double_t x)
{
const Double_t p1=-0.57721566, p2=0.42278420, p3=0.23069756,
p4= 3.488590e-2, p5=2.62698e-3, p6=1.0750e-4, p7=7.4e-6;
const Double_t q1= 1.25331414, q2=-7.832358e-2, q3= 2.189568e-2,
q4=-1.062446e-2, q5= 5.87872e-3, q6=-2.51540e-3, q7=5.3208e-4;
if (x <= 0) {
Error("TMath::BesselK0", "*K0* Invalid argument x = %g\n",x);
return 0;
}
Double_t y=0, result=0;
if (x <= 2) {
y = x*x/4;
result = (-log(x/2.)*TMath::BesselI0(x))+(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))));
} else {
y = 2/x;
result = (exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*q7))))));
}
return result;
}
Double_t TMath::BesselI1(Double_t x)
{
const Double_t p1=0.5, p2=0.87890594, p3=0.51498869,
p4=0.15084934, p5=2.658733e-2, p6=3.01532e-3, p7=3.2411e-4;
const Double_t q1= 0.39894228, q2=-3.988024e-2, q3=-3.62018e-3,
q4= 1.63801e-3, q5=-1.031555e-2, q6= 2.282967e-2,
q7=-2.895312e-2, q8= 1.787654e-2, q9=-4.20059e-3;
const Double_t k1 = 3.75;
Double_t ax = TMath::Abs(x);
Double_t y=0, result=0;
if (ax < k1) {
Double_t xx = x/k1;
y = xx*xx;
result = x*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))));
} else {
y = k1/ax;
result = (exp(ax)/sqrt(ax))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*(q7+y*(q8+y*q9))))))));
if (x < 0) result = -result;
}
return result;
}
Double_t TMath::BesselK1(Double_t x)
{
const Double_t p1= 1., p2= 0.15443144, p3=-0.67278579,
p4=-0.18156897, p5=-1.919402e-2, p6=-1.10404e-3, p7=-4.686e-5;
const Double_t q1= 1.25331414, q2= 0.23498619, q3=-3.655620e-2,
q4= 1.504268e-2, q5=-7.80353e-3, q6= 3.25614e-3, q7=-6.8245e-4;
if (x <= 0) {
Error("TMath::BesselK1", "*K1* Invalid argument x = %g\n",x);
return 0;
}
Double_t y=0,result=0;
if (x <= 2) {
y = x*x/4;
result = (log(x/2.)*TMath::BesselI1(x))+(1./x)*(p1+y*(p2+y*(p3+y*(p4+y*(p5+y*(p6+y*p7))))));
} else {
y = 2/x;
result = (exp(-x)/sqrt(x))*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*(q6+y*q7))))));
}
return result;
}
Double_t TMath::BesselK(Int_t n,Double_t x)
{
if (x <= 0 || n < 0) {
Error("TMath::BesselK", "*K* Invalid argument(s) (n,x) = (%d, %g)\n",n,x);
return 0;
}
if (n==0) return TMath::BesselK0(x);
if (n==1) return TMath::BesselK1(x);
Double_t tox = 2/x;
Double_t bkm = TMath::BesselK0(x);
Double_t bk = TMath::BesselK1(x);
Double_t bkp = 0;
for (Int_t j=1; j<n; j++) {
bkp = bkm+Double_t(j)*tox*bk;
bkm = bk;
bk = bkp;
}
return bk;
}
Double_t TMath::BesselI(Int_t n,Double_t x)
{
Int_t iacc = 40;
const Double_t kBigPositive = 1.e10;
const Double_t kBigNegative = 1.e-10;
if (n < 0) {
Error("TMath::BesselI", "*I* Invalid argument (n,x) = (%d, %g)\n",n,x);
return 0;
}
if (n==0) return TMath::BesselI0(x);
if (n==1) return TMath::BesselI1(x);
if (x == 0) return 0;
if (TMath::Abs(x) > kBigPositive) return 0;
Double_t tox = 2/TMath::Abs(x);
Double_t bip = 0, bim = 0;
Double_t bi = 1;
Double_t result = 0;
Int_t m = 2*((n+Int_t(sqrt(Float_t(iacc*n)))));
for (Int_t j=m; j>=1; j--) {
bim = bip+Double_t(j)*tox*bi;
bip = bi;
bi = bim;
if (TMath::Abs(bi) > kBigPositive) {
result *= kBigNegative;
bi *= kBigNegative;
bip *= kBigNegative;
}
if (j==n) result=bip;
}
result *= TMath::BesselI0(x)/bi;
if ((x < 0) && (n%2 == 1)) result = -result;
return result;
}
Double_t TMath::BesselJ0(Double_t x)
{
Double_t ax,z;
Double_t xx,y,result,result1,result2;
const Double_t p1 = 57568490574.0, p2 = -13362590354.0, p3 = 651619640.7;
const Double_t p4 = -11214424.18, p5 = 77392.33017, p6 = -184.9052456;
const Double_t p7 = 57568490411.0, p8 = 1029532985.0, p9 = 9494680.718;
const Double_t p10 = 59272.64853, p11 = 267.8532712;
const Double_t q1 = 0.785398164;
const Double_t q2 = -0.1098628627e-2, q3 = 0.2734510407e-4;
const Double_t q4 = -0.2073370639e-5, q5 = 0.2093887211e-6;
const Double_t q6 = -0.1562499995e-1, q7 = 0.1430488765e-3;
const Double_t q8 = -0.6911147651e-5, q9 = 0.7621095161e-6;
const Double_t q10 = 0.934935152e-7, q11 = 0.636619772;
if ((ax=fabs(x)) < 8) {
y=x*x;
result1 = p1 + y*(p2 + y*(p3 + y*(p4 + y*(p5 + y*p6))));
result2 = p7 + y*(p8 + y*(p9 + y*(p10 + y*(p11 + y))));
result = result1/result2;
} else {
z = 8/ax;
y = z*z;
xx = ax-q1;
result1 = 1 + y*(q2 + y*(q3 + y*(q4 + y*q5)));
result2 = q6 + y*(q7 + y*(q8 + y*(q9 - y*q10)));
result = sqrt(q11/ax)*(cos(xx)*result1-z*sin(xx)*result2);
}
return result;
}
Double_t TMath::BesselJ1(Double_t x)
{
Double_t ax,z;
Double_t xx,y,result,result1,result2;
const Double_t p1 = 72362614232.0, p2 = -7895059235.0, p3 = 242396853.1;
const Double_t p4 = -2972611.439, p5 = 15704.48260, p6 = -30.16036606;
const Double_t p7 = 144725228442.0, p8 = 2300535178.0, p9 = 18583304.74;
const Double_t p10 = 99447.43394, p11 = 376.9991397;
const Double_t q1 = 2.356194491;
const Double_t q2 = 0.183105e-2, q3 = -0.3516396496e-4;
const Double_t q4 = 0.2457520174e-5, q5 = -0.240337019e-6;
const Double_t q6 = 0.04687499995, q7 = -0.2002690873e-3;
const Double_t q8 = 0.8449199096e-5, q9 = -0.88228987e-6;
const Double_t q10 = 0.105787412e-6, q11 = 0.636619772;
if ((ax=fabs(x)) < 8) {
y=x*x;
result1 = x*(p1 + y*(p2 + y*(p3 + y*(p4 + y*(p5 + y*p6)))));
result2 = p7 + y*(p8 + y*(p9 + y*(p10 + y*(p11 + y))));
result = result1/result2;
} else {
z = 8/ax;
y = z*z;
xx = ax-q1;
result1 = 1 + y*(q2 + y*(q3 + y*(q4 + y*q5)));
result2 = q6 + y*(q7 + y*(q8 + y*(q9 + y*q10)));
result = sqrt(q11/ax)*(cos(xx)*result1-z*sin(xx)*result2);
if (x < 0) result = -result;
}
return result;
}
Double_t TMath::BesselY0(Double_t x)
{
Double_t z,xx,y,result,result1,result2;
const Double_t p1 = -2957821389., p2 = 7062834065.0, p3 = -512359803.6;
const Double_t p4 = 10879881.29, p5 = -86327.92757, p6 = 228.4622733;
const Double_t p7 = 40076544269., p8 = 745249964.8, p9 = 7189466.438;
const Double_t p10 = 47447.26470, p11 = 226.1030244, p12 = 0.636619772;
const Double_t q1 = 0.785398164;
const Double_t q2 = -0.1098628627e-2, q3 = 0.2734510407e-4;
const Double_t q4 = -0.2073370639e-5, q5 = 0.2093887211e-6;
const Double_t q6 = -0.1562499995e-1, q7 = 0.1430488765e-3;
const Double_t q8 = -0.6911147651e-5, q9 = 0.7621095161e-6;
const Double_t q10 = -0.934945152e-7, q11 = 0.636619772;
if (x < 8) {
y = x*x;
result1 = p1 + y*(p2 + y*(p3 + y*(p4 + y*(p5 + y*p6))));
result2 = p7 + y*(p8 + y*(p9 + y*(p10 + y*(p11 + y))));
result = (result1/result2) + p12*TMath::BesselJ0(x)*log(x);
} else {
z = 8/x;
y = z*z;
xx = x-q1;
result1 = 1 + y*(q2 + y*(q3 + y*(q4 + y*q5)));
result2 = q6 + y*(q7 + y*(q8 + y*(q9 + y*q10)));
result = sqrt(q11/x)*(sin(xx)*result1+z*cos(xx)*result2);
}
return result;
}
Double_t TMath::BesselY1(Double_t x)
{
Double_t z,xx,y,result,result1,result2;
const Double_t p1 = -0.4900604943e13, p2 = 0.1275274390e13;
const Double_t p3 = -0.5153438139e11, p4 = 0.7349264551e9;
const Double_t p5 = -0.4237922726e7, p6 = 0.8511937935e4;
const Double_t p7 = 0.2499580570e14, p8 = 0.4244419664e12;
const Double_t p9 = 0.3733650367e10, p10 = 0.2245904002e8;
const Double_t p11 = 0.1020426050e6, p12 = 0.3549632885e3;
const Double_t p13 = 0.636619772;
const Double_t q1 = 2.356194491;
const Double_t q2 = 0.183105e-2, q3 = -0.3516396496e-4;
const Double_t q4 = 0.2457520174e-5, q5 = -0.240337019e-6;
const Double_t q6 = 0.04687499995, q7 = -0.2002690873e-3;
const Double_t q8 = 0.8449199096e-5, q9 = -0.88228987e-6;
const Double_t q10 = 0.105787412e-6, q11 = 0.636619772;
if (x < 8) {
y=x*x;
result1 = x*(p1 + y*(p2 + y*(p3 + y*(p4 + y*(p5 + y*p6)))));
result2 = p7 + y*(p8 + y*(p9 + y*(p10 + y*(p11 + y*(p12+y)))));
result = (result1/result2) + p13*(TMath::BesselJ1(x)*log(x)-1/x);
} else {
z = 8/x;
y = z*z;
xx = x-q1;
result1 = 1 + y*(q2 + y*(q3 + y*(q4 + y*q5)));
result2 = q6 + y*(q7 + y*(q8 + y*(q9 + y*q10)));
result = sqrt(q11/x)*(sin(xx)*result1+z*cos(xx)*result2);
}
return result;
}
Double_t TMath::StruveH0(Double_t x)
{
const Int_t n1 = 15;
const Int_t n2 = 25;
const Double_t c1[16] = { 1.00215845609911981, -1.63969292681309147,
1.50236939618292819, -.72485115302121872,
.18955327371093136, -.03067052022988,
.00337561447375194, -2.6965014312602e-4,
1.637461692612e-5, -7.8244408508e-7,
3.021593188e-8, -9.6326645e-10,
2.579337e-11, -5.8854e-13,
1.158e-14, -2e-16 };
const Double_t c2[26] = { .99283727576423943, -.00696891281138625,
1.8205103787037e-4, -1.063258252844e-5,
9.8198294287e-7, -1.2250645445e-7,
1.894083312e-8, -3.44358226e-9,
7.1119102e-10, -1.6288744e-10,
4.065681e-11, -1.091505e-11,
3.12005e-12, -9.4202e-13,
2.9848e-13, -9.872e-14,
3.394e-14, -1.208e-14,
4.44e-15, -1.68e-15,
6.5e-16, -2.6e-16,
1.1e-16, -4e-17,
2e-17, -1e-17 };
const Double_t c0 = 2/TMath::Pi();
Int_t i;
Double_t alfa, h, r, y, b0, b1, b2;
Double_t v = TMath::Abs(x);
v = TMath::Abs(x);
if (v < 8) {
y = v/8;
h = 2*y*y -1;
alfa = h + h;
b0 = 0;
b1 = 0;
b2 = 0;
for (i = n1; i >= 0; --i) {
b0 = c1[i] + alfa*b1 - b2;
b2 = b1;
b1 = b0;
}
h = y*(b0 - h*b2);
} else {
r = 1/v;
h = 128*r*r -1;
alfa = h + h;
b0 = 0;
b1 = 0;
b2 = 0;
for (i = n2; i >= 0; --i) {
b0 = c2[i] + alfa*b1 - b2;
b2 = b1;
b1 = b0;
}
h = TMath::BesselY0(v) + r*c0*(b0 - h*b2);
}
if (x < 0) h = -h;
return h;
}
Double_t TMath::StruveH1(Double_t x)
{
const Int_t n3 = 16;
const Int_t n4 = 22;
const Double_t c3[17] = { .5578891446481605, -.11188325726569816,
-.16337958125200939, .32256932072405902,
-.14581632367244242, .03292677399374035,
-.00460372142093573, 4.434706163314e-4,
-3.142099529341e-5, 1.7123719938e-6,
-7.416987005e-8, 2.61837671e-9,
-7.685839e-11, 1.9067e-12,
-4.052e-14, 7.5e-16,
-1e-17 };
const Double_t c4[23] = { 1.00757647293865641, .00750316051248257,
-7.043933264519e-5, 2.66205393382e-6,
-1.8841157753e-7, 1.949014958e-8,
-2.6126199e-9, 4.236269e-10,
-7.955156e-11, 1.679973e-11,
-3.9072e-12, 9.8543e-13,
-2.6636e-13, 7.645e-14,
-2.313e-14, 7.33e-15,
-2.42e-15, 8.3e-16,
-3e-16, 1.1e-16,
-4e-17, 2e-17,-1e-17 };
const Double_t c0 = 2/TMath::Pi();
const Double_t cc = 2/(3*TMath::Pi());
Int_t i, i1;
Double_t alfa, h, r, y, b0, b1, b2;
Double_t v = TMath::Abs(x);
if (v == 0) {
h = 0;
} else if (v <= 0.3) {
y = v*v;
r = 1;
h = 1;
i1 = (Int_t)(-8. / TMath::Log10(v));
for (i = 1; i <= i1; ++i) {
h = -h*y / ((2*i+ 1)*(2*i + 3));
r += h;
}
h = cc*y*r;
} else if (v < 8) {
h = v*v/32 -1;
alfa = h + h;
b0 = 0;
b1 = 0;
b2 = 0;
for (i = n3; i >= 0; --i) {
b0 = c3[i] + alfa*b1 - b2;
b2 = b1;
b1 = b0;
}
h = b0 - h*b2;
} else {
h = 128/(v*v) -1;
alfa = h + h;
b0 = 0;
b1 = 0;
b2 = 0;
for (i = n4; i >= 0; --i) {
b0 = c4[i] + alfa*b1 - b2;
b2 = b1;
b1 = b0;
}
h = TMath::BesselY1(v) + c0*(b0 - h*b2);
}
return h;
}
Double_t TMath::StruveL0(Double_t x)
{
const Double_t pi=TMath::Pi();
Double_t s=1.0;
Double_t r=1.0;
Double_t a0,sl0,a1,bi0;
Int_t km,i;
if (x<=20.) {
a0=2.0*x/pi;
for (i=1; i<=60;i++) {
r*=(x/(2*i+1))*(x/(2*i+1));
s+=r;
if(TMath::Abs(r/s)<1.e-12) break;
}
sl0=a0*s;
} else {
km=int(5*(x+1.0));
if(x>=50.0)km=25;
for (i=1; i<=km; i++) {
r*=(2*i-1)*(2*i-1)/x/x;
s+=r;
if(TMath::Abs(r/s)<1.0e-12) break;
}
a1=TMath::Exp(x)/TMath::Sqrt(2*pi*x);
r=1.0;
bi0=1.0;
for (i=1; i<=16; i++) {
r=0.125*r*(2.0*i-1.0)*(2.0*i-1.0)/(i*x);
bi0+=r;
if(TMath::Abs(r/bi0)<1.0e-12) break;
}
bi0=a1*bi0;
sl0=-2.0/(pi*x)*s+bi0;
}
return sl0;
}
Double_t TMath::StruveL1(Double_t x)
{
const Double_t pi=TMath::Pi();
Double_t a1,sl1,bi1,s;
Double_t r=1.0;
Int_t km,i;
if (x<=20.) {
s=0.0;
for (i=1; i<=60;i++) {
r*=x*x/(4.0*i*i-1.0);
s+=r;
if(TMath::Abs(r)<TMath::Abs(s)*1.e-12) break;
}
sl1=2.0/pi*s;
} else {
s=1.0;
km=int(0.5*x);
if(x>50.0)km=25;
for (i=1; i<=km; i++) {
r*=(2*i+3)*(2*i+1)/x/x;
s+=r;
if(TMath::Abs(r/s)<1.0e-12) break;
}
sl1=2.0/pi*(-1.0+1.0/(x*x)+3.0*s/(x*x*x*x));
a1=TMath::Exp(x)/TMath::Sqrt(2*pi*x);
r=1.0;
bi1=1.0;
for (i=1; i<=16; i++) {
r=-0.125*r*(4.0-(2.0*i-1.0)*(2.0*i-1.0))/(i*x);
bi1+=r;
if(TMath::Abs(r/bi1)<1.0e-12) break;
}
sl1+=a1*bi1;
}
return sl1;
}
Double_t TMath::Beta(Double_t p, Double_t q)
{
return ::ROOT::Math::beta(p, q);
}
Double_t TMath::BetaCf(Double_t x, Double_t a, Double_t b)
{
Int_t itmax = 500;
Double_t eps = 3.e-14;
Double_t fpmin = 1.e-30;
Int_t m, m2;
Double_t aa, c, d, del, qab, qam, qap;
Double_t h;
qab = a+b;
qap = a+1.0;
qam = a-1.0;
c = 1.0;
d = 1.0 - qab*x/qap;
if (TMath::Abs(d)<fpmin) d=fpmin;
d=1.0/d;
h=d;
for (m=1; m<=itmax; m++) {
m2=m*2;
aa = m*(b-m)*x/((qam+ m2)*(a+m2));
d = 1.0 +aa*d;
if(TMath::Abs(d)<fpmin) d = fpmin;
c = 1 +aa/c;
if (TMath::Abs(c)<fpmin) c = fpmin;
d=1.0/d;
h*=d*c;
aa = -(a+m)*(qab +m)*x/((a+m2)*(qap+m2));
d=1.0+aa*d;
if(TMath::Abs(d)<fpmin) d = fpmin;
c = 1.0 +aa/c;
if (TMath::Abs(c)<fpmin) c = fpmin;
d=1.0/d;
del = d*c;
h*=del;
if (TMath::Abs(del-1)<=eps) break;
}
if (m>itmax) {
Info("TMath::BetaCf", "a or b too big, or itmax too small, a=%g, b=%g, x=%g, h=%g, itmax=%d",
a,b,x,h,itmax);
}
return h;
}
Double_t TMath::BetaDist(Double_t x, Double_t p, Double_t q)
{
if ((x<0) || (x>1) || (p<=0) || (q<=0)){
Error("TMath::BetaDist", "parameter value outside allowed range");
return 0;
}
Double_t beta = TMath::Beta(p, q);
Double_t r = TMath::Power(x, p-1)*TMath::Power(1-x, q-1)/beta;
return r;
}
Double_t TMath::BetaDistI(Double_t x, Double_t p, Double_t q)
{
if ((x<0) || (x>1) || (p<=0) || (q<=0)){
Error("TMath::BetaDistI", "parameter value outside allowed range");
return 0;
}
Double_t betai = TMath::BetaIncomplete(x, p, q);
return betai;
}
Double_t TMath::BetaIncomplete(Double_t x, Double_t a, Double_t b)
{
return ::ROOT::Math::inc_beta(x, a, b);
}
Double_t TMath::Binomial(Int_t n,Int_t k)
{
if (n<0 || k<0 || n<k) return TMath::SignalingNaN();
if (k==0 || n==k) return 1;
Int_t k1=TMath::Min(k,n-k);
Int_t k2=n-k1;
Double_t fact=k2+1;
for (Double_t i=k1;i>1.;--i)
fact *= (k2+i)/i;
return fact;
}
Double_t TMath::BinomialI(Double_t p, Int_t n, Int_t k)
{
if(k <= 0) return 1.0;
if(k > n) return 0.0;
if(k == n) return TMath::Power(p, n);
return BetaIncomplete(p, Double_t(k), Double_t(n-k+1));
}
Double_t TMath::CauchyDist(Double_t x, Double_t t, Double_t s)
{
Double_t temp= (x-t)*(x-t)/(s*s);
Double_t result = 1/(s*TMath::Pi()*(1+temp));
return result;
}
Double_t TMath::ChisquareQuantile(Double_t p, Double_t ndf)
{
Double_t c[]={0, 0.01, 0.222222, 0.32, 0.4, 1.24, 2.2,
4.67, 6.66, 6.73, 13.32, 60.0, 70.0,
84.0, 105.0, 120.0, 127.0, 140.0, 175.0,
210.0, 252.0, 264.0, 294.0, 346.0, 420.0,
462.0, 606.0, 672.0, 707.0, 735.0, 889.0,
932.0, 966.0, 1141.0, 1182.0, 1278.0, 1740.0,
2520.0, 5040.0};
Double_t e = 5e-7;
Double_t aa = 0.6931471806;
Int_t maxit = 20;
Double_t ch, p1, p2, q, t, a, b, x;
Double_t s1, s2, s3, s4, s5, s6;
if (ndf <= 0) return 0;
Double_t g = TMath::LnGamma(0.5*ndf);
Double_t xx = 0.5 * ndf;
Double_t cp = xx - 1;
if (ndf >= TMath::Log(p)*(-c[5])){
if (ndf > c[3]) {
x = TMath::NormQuantile(p);
p1=c[2]/ndf;
ch = ndf*TMath::Power((x*TMath::Sqrt(p1) + 1 - p1), 3);
if (ch > c[6]*ndf + 6)
ch = -2 * (TMath::Log(1-p) - cp * TMath::Log(0.5 * ch) + g);
} else {
ch = c[4];
a = TMath::Log(1-p);
do{
q = ch;
p1 = 1 + ch * (c[7]+ch);
p2 = ch * (c[9] + ch * (c[8] + ch));
t = -0.5 + (c[7] + 2 * ch) / p1 - (c[9] + ch * (c[10] + 3 * ch)) / p2;
ch = ch - (1 - TMath::Exp(a + g + 0.5 * ch + cp * aa) *p2 / p1) / t;
}while (TMath::Abs(q/ch - 1) > c[1]);
}
} else {
ch = TMath::Power((p * xx * TMath::Exp(g + xx * aa)),(1./xx));
if (ch < e) return ch;
}
for (Int_t i=0; i<maxit; i++){
q = ch;
p1 = 0.5 * ch;
p2 = p - TMath::Gamma(xx, p1);
t = p2 * TMath::Exp(xx * aa + g + p1 - cp * TMath::Log(ch));
b = t / ch;
a = 0.5 * t - b * cp;
s1 = (c[19] + a * (c[17] + a * (c[14] + a * (c[13] + a * (c[12] +c[11] * a))))) / c[24];
s2 = (c[24] + a * (c[29] + a * (c[32] + a * (c[33] + c[35] * a)))) / c[37];
s3 = (c[19] + a * (c[25] + a * (c[28] + c[31] * a))) / c[37];
s4 = (c[20] + a * (c[27] + c[34] * a) + cp * (c[22] + a * (c[30] + c[36] * a))) / c[38];
s5 = (c[13] + c[21] * a + cp * (c[18] + c[26] * a)) / c[37];
s6 = (c[15] + cp * (c[23] + c[16] * cp)) / c[38];
ch = ch + t * (1 + 0.5 * t * s1 - b * cp * (s1 - b * (s2 - b * (s3 - b * (s4 - b * (s5 - b * s6))))));
if (TMath::Abs(q / ch - 1) > e) break;
}
return ch;
}
Double_t TMath::FDist(Double_t F, Double_t N, Double_t M)
{
return ::ROOT::Math::fdistribution_pdf(F,N,M);
}
Double_t TMath::FDistI(Double_t F, Double_t N, Double_t M)
{
Double_t fi = ::ROOT::Math::fdistribution_cdf(F,N,M);
return fi;
}
Double_t TMath::GammaDist(Double_t x, Double_t gamma, Double_t mu, Double_t beta)
{
/*
<img src="gif/gammadist.gif">
*/
//End_Html
if ((x<mu) || (gamma<=0) || (beta <=0)) {
Error("TMath::GammaDist", "illegal parameter values");
return 0;
}
return ::ROOT::Math::gamma_pdf(x, gamma, beta, mu);
}
Double_t TMath::LaplaceDist(Double_t x, Double_t alpha, Double_t beta)
{
Double_t temp;
temp = TMath::Exp(-TMath::Abs((x-alpha)/beta));
temp /= (2.*beta);
return temp;
}
Double_t TMath::LaplaceDistI(Double_t x, Double_t alpha, Double_t beta)
{
Double_t temp;
if (x<=alpha){
temp = 0.5*TMath::Exp(-TMath::Abs((x-alpha)/beta));
} else {
temp = 1-0.5*TMath::Exp(-TMath::Abs((x-alpha)/beta));
}
return temp;
}
Double_t TMath::LogNormal(Double_t x, Double_t sigma, Double_t theta, Double_t m)
{
/*
<img src="gif/lognormal.gif">
*/
//End_Html
if ((x<theta) || (sigma<=0) || (m<=0)) {
Error("TMath::Lognormal", "illegal parameter values");
return 0;
}
return ::ROOT::Math::lognormal_pdf(x, TMath::Log(m), sigma, theta);
}
Double_t TMath::NormQuantile(Double_t p)
{
if ((p<=0)||(p>=1)) {
Error("TMath::NormQuantile", "probability outside (0, 1)");
return 0;
}
Double_t a0 = 3.3871328727963666080e0;
Double_t a1 = 1.3314166789178437745e+2;
Double_t a2 = 1.9715909503065514427e+3;
Double_t a3 = 1.3731693765509461125e+4;
Double_t a4 = 4.5921953931549871457e+4;
Double_t a5 = 6.7265770927008700853e+4;
Double_t a6 = 3.3430575583588128105e+4;
Double_t a7 = 2.5090809287301226727e+3;
Double_t b1 = 4.2313330701600911252e+1;
Double_t b2 = 6.8718700749205790830e+2;
Double_t b3 = 5.3941960214247511077e+3;
Double_t b4 = 2.1213794301586595867e+4;
Double_t b5 = 3.9307895800092710610e+4;
Double_t b6 = 2.8729085735721942674e+4;
Double_t b7 = 5.2264952788528545610e+3;
Double_t c0 = 1.42343711074968357734e0;
Double_t c1 = 4.63033784615654529590e0;
Double_t c2 = 5.76949722146069140550e0;
Double_t c3 = 3.64784832476320460504e0;
Double_t c4 = 1.27045825245236838258e0;
Double_t c5 = 2.41780725177450611770e-1;
Double_t c6 = 2.27238449892691845833e-2;
Double_t c7 = 7.74545014278341407640e-4;
Double_t d1 = 2.05319162663775882187e0;
Double_t d2 = 1.67638483018380384940e0;
Double_t d3 = 6.89767334985100004550e-1;
Double_t d4 = 1.48103976427480074590e-1;
Double_t d5 = 1.51986665636164571966e-2;
Double_t d6 = 5.47593808499534494600e-4;
Double_t d7 = 1.05075007164441684324e-9;
Double_t e0 = 6.65790464350110377720e0;
Double_t e1 = 5.46378491116411436990e0;
Double_t e2 = 1.78482653991729133580e0;
Double_t e3 = 2.96560571828504891230e-1;
Double_t e4 = 2.65321895265761230930e-2;
Double_t e5 = 1.24266094738807843860e-3;
Double_t e6 = 2.71155556874348757815e-5;
Double_t e7 = 2.01033439929228813265e-7;
Double_t f1 = 5.99832206555887937690e-1;
Double_t f2 = 1.36929880922735805310e-1;
Double_t f3 = 1.48753612908506148525e-2;
Double_t f4 = 7.86869131145613259100e-4;
Double_t f5 = 1.84631831751005468180e-5;
Double_t f6 = 1.42151175831644588870e-7;
Double_t f7 = 2.04426310338993978564e-15;
Double_t split1 = 0.425;
Double_t split2=5.;
Double_t konst1=0.180625;
Double_t konst2=1.6;
Double_t q, r, quantile;
q=p-0.5;
if (TMath::Abs(q)<split1) {
r=konst1-q*q;
quantile = q* (((((((a7 * r + a6) * r + a5) * r + a4) * r + a3)
* r + a2) * r + a1) * r + a0) /
(((((((b7 * r + b6) * r + b5) * r + b4) * r + b3)
* r + b2) * r + b1) * r + 1.);
} else {
if(q<0) r=p;
else r=1-p;
if (r<=0)
quantile=0;
else {
r=TMath::Sqrt(-TMath::Log(r));
if (r<=split2) {
r=r-konst2;
quantile=(((((((c7 * r + c6) * r + c5) * r + c4) * r + c3)
* r + c2) * r + c1) * r + c0) /
(((((((d7 * r + d6) * r + d5) * r + d4) * r + d3)
* r + d2) * r + d1) * r + 1);
} else{
r=r-split2;
quantile=(((((((e7 * r + e6) * r + e5) * r + e4) * r + e3)
* r + e2) * r + e1) * r + e0) /
(((((((f7 * r + f6) * r + f5) * r + f4) * r + f3)
* r + f2) * r + f1) * r + 1);
}
if (q<0) quantile=-quantile;
}
}
return quantile;
}
Bool_t TMath::Permute(Int_t n, Int_t *a)
{
Int_t i,itmp;
Int_t i1=-1;
for(i=n-2; i>-1; i--) {
if(a[i]<a[i+1]) {
i1=i;
break;
}
}
if(i1==-1) return kFALSE;
else {
for(i=n-1;i>i1;i--) {
if(a[i] > a[i1]) {
itmp=a[i1];
a[i1]=a[i];
a[i]=itmp;
break;
}
}
for(i=0;i<(n-i1-1)/2;i++) {
itmp=a[i1+i+1];
a[i1+i+1]=a[n-i-1];
a[n-i-1]=itmp;
}
}
return kTRUE;
}
Double_t TMath::Student(Double_t T, Double_t ndf)
{
if (ndf < 1) {
return 0;
}
Double_t r = ndf;
Double_t rh = 0.5*r;
Double_t rh1 = rh + 0.5;
Double_t denom = TMath::Sqrt(r*TMath::Pi())*TMath::Gamma(rh)*TMath::Power(1+T*T/r, rh1);
return TMath::Gamma(rh1)/denom;
}
Double_t TMath::StudentI(Double_t T, Double_t ndf)
{
Double_t r = ndf;
Double_t si = (T>0) ?
(1 - 0.5*BetaIncomplete((r/(r + T*T)), r*0.5, 0.5)) :
0.5*BetaIncomplete((r/(r + T*T)), r*0.5, 0.5);
return si;
}
Double_t TMath::StudentQuantile(Double_t p, Double_t ndf, Bool_t lower_tail)
{
Double_t quantile;
Double_t temp;
Bool_t neg;
Double_t q;
if (ndf<1 || p>=1 || p<=0) {
Error("TMath::StudentQuantile", "illegal parameter values");
return 0;
}
if ((lower_tail && p>0.5)||(!lower_tail && p<0.5)){
neg=kFALSE;
q=2*(lower_tail ? (1-p) : p);
} else {
neg=kTRUE;
q=2*(lower_tail? p : (1-p));
}
if ((ndf-1)<1e-8) {
temp=TMath::PiOver2()*q;
quantile = TMath::Cos(temp)/TMath::Sin(temp);
} else {
if ((ndf-2)<1e-8) {
quantile = TMath::Sqrt(2./(q*(2-q))-2);
} else {
Double_t a=1./(ndf-0.5);
Double_t b=48./(a*a);
Double_t c=((20700*a/b -98)*a-16)*a+96.36;
Double_t d=((94.5/(b+c)-3.)/b+1)*TMath::Sqrt(a*TMath::PiOver2())*ndf;
Double_t x=q*d;
Double_t y=TMath::Power(x, (2./ndf));
if (y>0.05+a){
x=TMath::NormQuantile(q*0.5);
y=x*x;
if (ndf<5) c+=0.3*(ndf-4.5)*(x+0.6);
c+=(((0.05*d*x-5.)*x-7.)*x-2.)*x +b;
y=(((((0.4*y+6.3)*y+36.)*y+94.5)/c - y-3.)/b+1)*x;
y=a*y*y;
if(y>0.002) y = TMath::Exp(y)-1;
else y += 0.5*y*y;
} else {
y=((1./(((ndf+6.)/(ndf*y)-0.089*d-0.822)*(ndf+2.)*3)+0.5/(ndf+4.))*y-1.)*
(ndf+1.)/(ndf+2.)+1/y;
}
quantile = TMath::Sqrt(ndf*y);
}
}
if(neg) quantile=-quantile;
return quantile;
}
Double_t TMath::Vavilov(Double_t x, Double_t kappa, Double_t beta2)
{
/*
<img src="gif/Vavilov.gif">
*/
//End_Html
Double_t *ac = new Double_t[14];
Double_t *hc = new Double_t[9];
Int_t itype;
Int_t npt;
TMath::VavilovSet(kappa, beta2, 0, 0, ac, hc, itype, npt);
Double_t v = TMath::VavilovDenEval(x, ac, hc, itype);
delete [] ac;
delete [] hc;
return v;
}
Double_t TMath::VavilovI(Double_t x, Double_t kappa, Double_t beta2)
{
Double_t *ac = new Double_t[14];
Double_t *hc = new Double_t[9];
Double_t *wcm = new Double_t[201];
Int_t itype;
Int_t npt;
Int_t k;
Double_t xx, v;
TMath::VavilovSet(kappa, beta2, 1, wcm, ac, hc, itype, npt);
if (x < ac[0]) v = 0;
else if (x >=ac[8]) v = 1;
else {
xx = x - ac[0];
k = Int_t(xx*ac[10]);
v = TMath::Min(wcm[k] + (xx - k*ac[9])*(wcm[k+1]-wcm[k])*ac[10], 1.);
}
delete [] ac;
delete [] hc;
delete [] wcm;
return v;
}
Double_t TMath::LandauI(Double_t x)
{
return ::ROOT::Math::landau_cdf(x);
}
void TMath::VavilovSet(Double_t rkappa, Double_t beta2, Bool_t mode, Double_t *WCM, Double_t *AC, Double_t *HC, Int_t &itype, Int_t &npt)
{
Double_t BKMNX1 = 0.02, BKMNY1 = 0.05, BKMNX2 = 0.12, BKMNY2 = 0.05,
BKMNX3 = 0.22, BKMNY3 = 0.05, BKMXX1 = 0.1 , BKMXY1 = 1,
BKMXX2 = 0.2 , BKMXY2 = 1 , BKMXX3 = 0.3 , BKMXY3 = 1;
Double_t FBKX1 = 2/(BKMXX1-BKMNX1), FBKX2 = 2/(BKMXX2-BKMNX2),
FBKX3 = 2/(BKMXX3-BKMNX3), FBKY1 = 2/(BKMXY1-BKMNY1),
FBKY2 = 2/(BKMXY2-BKMNY2), FBKY3 = 2/(BKMXY3-BKMNY3);
Double_t FNINV[] = {0, 1, 0.5, 0.33333333, 0.25, 0.2};
Double_t EDGEC[]= {0, 0, 0.16666667e+0, 0.41666667e-1, 0.83333333e-2,
0.13888889e-1, 0.69444444e-2, 0.77160493e-3};
Double_t U1[] = {0, 0.25850868e+0, 0.32477982e-1, -0.59020496e-2,
0. , 0.24880692e-1, 0.47404356e-2,
-0.74445130e-3, 0.73225731e-2, 0. ,
0.11668284e-2, 0. , -0.15727318e-2,-0.11210142e-2};
Double_t U2[] = {0, 0.43142611e+0, 0.40797543e-1, -0.91490215e-2,
0. , 0.42127077e-1, 0.73167928e-2,
-0.14026047e-2, 0.16195241e-1, 0.24714789e-2,
0.20751278e-2, 0. , -0.25141668e-2,-0.14064022e-2};
Double_t U3[] = {0, 0.25225955e+0, 0.64820468e-1, -0.23615759e-1,
0. , 0.23834176e-1, 0.21624675e-2,
-0.26865597e-2, -0.54891384e-2, 0.39800522e-2,
0.48447456e-2, -0.89439554e-2, -0.62756944e-2,-0.24655436e-2};
Double_t U4[] = {0, 0.12593231e+1, -0.20374501e+0, 0.95055662e-1,
-0.20771531e-1, -0.46865180e-1, -0.77222986e-2,
0.32241039e-2, 0.89882920e-2, -0.67167236e-2,
-0.13049241e-1, 0.18786468e-1, 0.14484097e-1};
Double_t U5[] = {0, -0.24864376e-1, -0.10368495e-2, 0.14330117e-2,
0.20052730e-3, 0.18751903e-2, 0.12668869e-2,
0.48736023e-3, 0.34850854e-2, 0. ,
-0.36597173e-3, 0.19372124e-2, 0.70761825e-3, 0.46898375e-3};
Double_t U6[] = {0, 0.35855696e-1, -0.27542114e-1, 0.12631023e-1,
-0.30188807e-2, -0.84479939e-3, 0. ,
0.45675843e-3, -0.69836141e-2, 0.39876546e-2,
-0.36055679e-2, 0. , 0.15298434e-2, 0.19247256e-2};
Double_t U7[] = {0, 0.10234691e+2, -0.35619655e+1, 0.69387764e+0,
-0.14047599e+0, -0.19952390e+1, -0.45679694e+0,
0. , 0.50505298e+0};
Double_t U8[] = {0, 0.21487518e+2, -0.11825253e+2, 0.43133087e+1,
-0.14500543e+1, -0.34343169e+1, -0.11063164e+1,
-0.21000819e+0, 0.17891643e+1, -0.89601916e+0,
0.39120793e+0, 0.73410606e+0, 0. ,-0.32454506e+0};
Double_t V1[] = {0, 0.27827257e+0, -0.14227603e-2, 0.24848327e-2,
0. , 0.45091424e-1, 0.80559636e-2,
-0.38974523e-2, 0. , -0.30634124e-2,
0.75633702e-3, 0.54730726e-2, 0.19792507e-2};
Double_t V2[] = {0, 0.41421789e+0, -0.30061649e-1, 0.52249697e-2,
0. , 0.12693873e+0, 0.22999801e-1,
-0.86792801e-2, 0.31875584e-1, -0.61757928e-2,
0. , 0.19716857e-1, 0.32596742e-2};
Double_t V3[] = {0, 0.20191056e+0, -0.46831422e-1, 0.96777473e-2,
-0.17995317e-2, 0.53921588e-1, 0.35068740e-2,
-0.12621494e-1, -0.54996531e-2, -0.90029985e-2,
0.34958743e-2, 0.18513506e-1, 0.68332334e-2,-0.12940502e-2};
Double_t V4[] = {0, 0.13206081e+1, 0.10036618e+0, -0.22015201e-1,
0.61667091e-2, -0.14986093e+0, -0.12720568e-1,
0.24972042e-1, -0.97751962e-2, 0.26087455e-1,
-0.11399062e-1, -0.48282515e-1, -0.98552378e-2};
Double_t V5[] = {0, 0.16435243e-1, 0.36051400e-1, 0.23036520e-2,
-0.61666343e-3, -0.10775802e-1, 0.51476061e-2,
0.56856517e-2, -0.13438433e-1, 0. ,
0. , -0.25421507e-2, 0.20169108e-2,-0.15144931e-2};
Double_t V6[] = {0, 0.33432405e-1, 0.60583916e-2, -0.23381379e-2,
0.83846081e-3, -0.13346861e-1, -0.17402116e-2,
0.21052496e-2, 0.15528195e-2, 0.21900670e-2,
-0.13202847e-2, -0.45124157e-2, -0.15629454e-2, 0.22499176e-3};
Double_t V7[] = {0, 0.54529572e+1, -0.90906096e+0, 0.86122438e-1,
0. , -0.12218009e+1, -0.32324120e+0,
-0.27373591e-1, 0.12173464e+0, 0. ,
0. , 0.40917471e-1};
Double_t V8[] = {0, 0.93841352e+1, -0.16276904e+1, 0.16571423e+0,
0. , -0.18160479e+1, -0.50919193e+0,
-0.51384654e-1, 0.21413992e+0, 0. ,
0. , 0.66596366e-1};
Double_t W1[] = {0, 0.29712951e+0, 0.97572934e-2, 0. ,
-0.15291686e-2, 0.35707399e-1, 0.96221631e-2,
-0.18402821e-2, -0.49821585e-2, 0.18831112e-2,
0.43541673e-2, 0.20301312e-2, -0.18723311e-2,-0.73403108e-3};
Double_t W2[] = {0, 0.40882635e+0, 0.14474912e-1, 0.25023704e-2,
-0.37707379e-2, 0.18719727e+0, 0.56954987e-1,
0. , 0.23020158e-1, 0.50574313e-2,
0.94550140e-2, 0.19300232e-1};
Double_t W3[] = {0, 0.16861629e+0, 0. , 0.36317285e-2,
-0.43657818e-2, 0.30144338e-1, 0.13891826e-1,
-0.58030495e-2, -0.38717547e-2, 0.85359607e-2,
0.14507659e-1, 0.82387775e-2, -0.10116105e-1,-0.55135670e-2};
Double_t W4[] = {0, 0.13493891e+1, -0.26863185e-2, -0.35216040e-2,
0.24434909e-1, -0.83447911e-1, -0.48061360e-1,
0.76473951e-2, 0.24494430e-1, -0.16209200e-1,
-0.37768479e-1, -0.47890063e-1, 0.17778596e-1, 0.13179324e-1};
Double_t W5[] = {0, 0.10264945e+0, 0.32738857e-1, 0. ,
0.43608779e-2, -0.43097757e-1, -0.22647176e-2,
0.94531290e-2, -0.12442571e-1, -0.32283517e-2,
-0.75640352e-2, -0.88293329e-2, 0.52537299e-2, 0.13340546e-2};
Double_t W6[] = {0, 0.29568177e-1, -0.16300060e-2, -0.21119745e-3,
0.23599053e-2, -0.48515387e-2, -0.40797531e-2,
0.40403265e-3, 0.18200105e-2, -0.14346306e-2,
-0.39165276e-2, -0.37432073e-2, 0.19950380e-2, 0.12222675e-2};
Double_t W8[] = {0, 0.66184645e+1, -0.73866379e+0, 0.44693973e-1,
0. , -0.14540925e+1, -0.39529833e+0,
-0.44293243e-1, 0.88741049e-1};
itype = 0;
if (rkappa <0.01 || rkappa >12) {
Error("Vavilov distribution", "illegal value of kappa");
return;
}
Double_t DRK[6];
Double_t DSIGM[6];
Double_t ALFA[8];
Int_t j;
Double_t x, y, xx, yy, x2, x3, y2, y3, xy, p2, p3, q2, q3, pq;
if (rkappa >= 0.29) {
itype = 1;
npt = 100;
Double_t wk = 1./TMath::Sqrt(rkappa);
AC[0] = (-0.032227*beta2-0.074275)*rkappa + (0.24533*beta2+0.070152)*wk + (-0.55610*beta2-3.1579);
AC[8] = (-0.013483*beta2-0.048801)*rkappa + (-1.6921*beta2+8.3656)*wk + (-0.73275*beta2-3.5226);
DRK[1] = wk*wk;
DSIGM[1] = TMath::Sqrt(rkappa/(1-0.5*beta2));
for (j=1; j<=4; j++) {
DRK[j+1] = DRK[1]*DRK[j];
DSIGM[j+1] = DSIGM[1]*DSIGM[j];
ALFA[j+1] = (FNINV[j]-beta2*FNINV[j+1])*DRK[j];
}
HC[0]=TMath::Log(rkappa)+beta2+0.42278434;
HC[1]=DSIGM[1];
HC[2]=ALFA[3]*DSIGM[3];
HC[3]=(3*ALFA[2]*ALFA[2] + ALFA[4])*DSIGM[4]-3;
HC[4]=(10*ALFA[2]*ALFA[3]+ALFA[5])*DSIGM[5]-10*HC[2];
HC[5]=HC[2]*HC[2];
HC[6]=HC[2]*HC[3];
HC[7]=HC[2]*HC[5];
for (j=2; j<=7; j++)
HC[j]*=EDGEC[j];
HC[8]=0.39894228*HC[1];
}
else if (rkappa >=0.22) {
itype = 2;
npt = 150;
x = 1+(rkappa-BKMXX3)*FBKX3;
y = 1+(TMath::Sqrt(beta2)-BKMXY3)*FBKY3;
xx = 2*x;
yy = 2*y;
x2 = xx*x-1;
x3 = xx*x2-x;
y2 = yy*y-1;
y3 = yy*y2-y;
xy = x*y;
p2 = x2*y;
p3 = x3*y;
q2 = y2*x;
q3 = y3*x;
pq = x2*y2;
AC[1] = W1[1] + W1[2]*x + W1[4]*x3 + W1[5]*y + W1[6]*y2 + W1[7]*y3 +
W1[8]*xy + W1[9]*p2 + W1[10]*p3 + W1[11]*q2 + W1[12]*q3 + W1[13]*pq;
AC[2] = W2[1] + W2[2]*x + W2[3]*x2 + W2[4]*x3 + W2[5]*y + W2[6]*y2 +
W2[8]*xy + W2[9]*p2 + W2[10]*p3 + W2[11]*q2;
AC[3] = W3[1] + W3[3]*x2 + W3[4]*x3 + W3[5]*y + W3[6]*y2 + W3[7]*y3 +
W3[8]*xy + W3[9]*p2 + W3[10]*p3 + W3[11]*q2 + W3[12]*q3 + W3[13]*pq;
AC[4] = W4[1] + W4[2]*x + W4[3]*x2 + W4[4]*x3 + W4[5]*y + W4[6]*y2 + W4[7]*y3 +
W4[8]*xy + W4[9]*p2 + W4[10]*p3 + W4[11]*q2 + W4[12]*q3 + W4[13]*pq;
AC[5] = W5[1] + W5[2]*x + W5[4]*x3 + W5[5]*y + W5[6]*y2 + W5[7]*y3 +
W5[8]*xy + W5[9]*p2 + W5[10]*p3 + W5[11]*q2 + W5[12]*q3 + W5[13]*pq;
AC[6] = W6[1] + W6[2]*x + W6[3]*x2 + W6[4]*x3 + W6[5]*y + W6[6]*y2 + W6[7]*y3 +
W6[8]*xy + W6[9]*p2 + W6[10]*p3 + W6[11]*q2 + W6[12]*q3 + W6[13]*pq;
AC[8] = W8[1] + W8[2]*x + W8[3]*x2 + W8[5]*y + W8[6]*y2 + W8[7]*y3 + W8[8]*xy;
AC[0] = -3.05;
} else if (rkappa >= 0.12) {
itype = 3;
npt = 200;
x = 1 + (rkappa-BKMXX2)*FBKX2;
y = 1 + (TMath::Sqrt(beta2)-BKMXY2)*FBKY2;
xx = 2*x;
yy = 2*y;
x2 = xx*x-1;
x3 = xx*x2-x;
y2 = yy*y-1;
y3 = yy*y2-y;
xy = x*y;
p2 = x2*y;
p3 = x3*y;
q2 = y2*x;
q3 = y3*x;
pq = x2*y2;
AC[1] = V1[1] + V1[2]*x + V1[3]*x2 + V1[5]*y + V1[6]*y2 + V1[7]*y3 +
V1[9]*p2 + V1[10]*p3 + V1[11]*q2 + V1[12]*q3;
AC[2] = V2[1] + V2[2]*x + V2[3]*x2 + V2[5]*y + V2[6]*y2 + V2[7]*y3 +
V2[8]*xy + V2[9]*p2 + V2[11]*q2 + V2[12]*q3;
AC[3] = V3[1] + V3[2]*x + V3[3]*x2 + V3[4]*x3 + V3[5]*y + V3[6]*y2 + V3[7]*y3 +
V3[8]*xy + V3[9]*p2 + V3[10]*p3 + V3[11]*q2 + V3[12]*q3 + V3[13]*pq;
AC[4] = V4[1] + V4[2]*x + V4[3]*x2 + V4[4]*x3 + V4[5]*y + V4[6]*y2 + V4[7]*y3 +
V4[8]*xy + V4[9]*p2 + V4[10]*p3 + V4[11]*q2 + V4[12]*q3;
AC[5] = V5[1] + V5[2]*x + V5[3]*x2 + V5[4]*x3 + V5[5]*y + V5[6]*y2 + V5[7]*y3 +
V5[8]*xy + V5[11]*q2 + V5[12]*q3 + V5[13]*pq;
AC[6] = V6[1] + V6[2]*x + V6[3]*x2 + V6[4]*x3 + V6[5]*y + V6[6]*y2 + V6[7]*y3 +
V6[8]*xy + V6[9]*p2 + V6[10]*p3 + V6[11]*q2 + V6[12]*q3 + V6[13]*pq;
AC[7] = V7[1] + V7[2]*x + V7[3]*x2 + V7[5]*y + V7[6]*y2 + V7[7]*y3 +
V7[8]*xy + V7[11]*q2;
AC[8] = V8[1] + V8[2]*x + V8[3]*x2 + V8[5]*y + V8[6]*y2 + V8[7]*y3 +
V8[8]*xy + V8[11]*q2;
AC[0] = -3.04;
} else {
itype = 4;
if (rkappa >=0.02) itype = 3;
npt = 200;
x = 1+(rkappa-BKMXX1)*FBKX1;
y = 1+(TMath::Sqrt(beta2)-BKMXY1)*FBKY1;
xx = 2*x;
yy = 2*y;
x2 = xx*x-1;
x3 = xx*x2-x;
y2 = yy*y-1;
y3 = yy*y2-y;
xy = x*y;
p2 = x2*y;
p3 = x3*y;
q2 = y2*x;
q3 = y3*x;
pq = x2*y2;
if (itype==3){
AC[1] = U1[1] + U1[2]*x + U1[3]*x2 + U1[5]*y + U1[6]*y2 + U1[7]*y3 +
U1[8]*xy + U1[10]*p3 + U1[12]*q3 + U1[13]*pq;
AC[2] = U2[1] + U2[2]*x + U2[3]*x2 + U2[5]*y + U2[6]*y2 + U2[7]*y3 +
U2[8]*xy + U2[9]*p2 + U2[10]*p3 + U2[12]*q3 + U2[13]*pq;
AC[3] = U3[1] + U3[2]*x + U3[3]*x2 + U3[5]*y + U3[6]*y2 + U3[7]*y3 +
U3[8]*xy + U3[9]*p2 + U3[10]*p3 + U3[11]*q2 + U3[12]*q3 + U3[13]*pq;
AC[4] = U4[1] + U4[2]*x + U4[3]*x2 + U4[4]*x3 + U4[5]*y + U4[6]*y2 + U4[7]*y3 +
U4[8]*xy + U4[9]*p2 + U4[10]*p3 + U4[11]*q2 + U4[12]*q3;
AC[5] = U5[1] + U5[2]*x + U5[3]*x2 + U5[4]*x3 + U5[5]*y + U5[6]*y2 + U5[7]*y3 +
U5[8]*xy + U5[10]*p3 + U5[11]*q2 + U5[12]*q3 + U5[13]*pq;
AC[6] = U6[1] + U6[2]*x + U6[3]*x2 + U6[4]*x3 + U6[5]*y + U6[7]*y3 +
U6[8]*xy + U6[9]*p2 + U6[10]*p3 + U6[12]*q3 + U6[13]*pq;
AC[7] = U7[1] + U7[2]*x + U7[3]*x2 + U7[4]*x3 + U7[5]*y + U7[6]*y2 + U7[8]*xy;
}
AC[8] = U8[1] + U8[2]*x + U8[3]*x2 + U8[4]*x3 + U8[5]*y + U8[6]*y2 + U8[7]*y3 +
U8[8]*xy + U8[9]*p2 + U8[10]*p3 + U8[11]*q2 + U8[13]*pq;
AC[0] = -3.03;
}
AC[9] = (AC[8] - AC[0])/npt;
AC[10] = 1./AC[9];
if (itype == 3) {
x = (AC[7]-AC[8])/(AC[7]*AC[8]);
y = 1./TMath::Log(AC[8]/AC[7]);
p2 = AC[7]*AC[7];
AC[11] = p2*(AC[1]*TMath::Exp(-AC[2]*(AC[7]+AC[5]*p2)-
AC[3]*TMath::Exp(-AC[4]*(AC[7]+AC[6]*p2)))-0.045*y/AC[7])/(1+x*y*AC[7]);
AC[12] = (0.045+x*AC[11])*y;
}
if (itype == 4) AC[13] = 0.995/LandauI(AC[8]);
if (mode==0) return;
x = AC[0];
WCM[0] = 0;
Double_t fl, fu;
Int_t k;
fl = TMath::VavilovDenEval(x, AC, HC, itype);
for (k=1; k<=npt; k++) {
x += AC[9];
fu = TMath::VavilovDenEval(x, AC, HC, itype);
WCM[k] = WCM[k-1] + fl + fu;
fl = fu;
}
x = 0.5*AC[9];
for (k=1; k<=npt; k++)
WCM[k]*=x;
}
Double_t TMath::VavilovDenEval(Double_t rlam, Double_t *AC, Double_t *HC, Int_t itype)
{
Double_t v = 0;
if (rlam < AC[0] || rlam > AC[8])
return 0;
Int_t k;
Double_t x, fn, s;
Double_t h[10];
if (itype ==1 ) {
fn = 1;
x = (rlam + HC[0])*HC[1];
h[1] = x;
h[2] = x*x -1;
for (k=2; k<=8; k++) {
fn++;
h[k+1] = x*h[k]-fn*h[k-1];
}
s = 1 + HC[7]*h[9];
for (k=2; k<=6; k++)
s+=HC[k]*h[k+1];
v = HC[8]*TMath::Exp(-0.5*x*x)*TMath::Max(s, 0.);
}
else if (itype == 2) {
x = rlam*rlam;
v = AC[1]*TMath::Exp(-AC[2]*(rlam+AC[5]*x) - AC[3]*TMath::Exp(-AC[4]*(rlam+AC[6]*x)));
}
else if (itype == 3) {
if (rlam < AC[7]) {
x = rlam*rlam;
v = AC[1]*TMath::Exp(-AC[2]*(rlam+AC[5]*x)-AC[3]*TMath::Exp(-AC[4]*(rlam+AC[6]*x)));
} else {
x = 1./rlam;
v = (AC[11]*x + AC[12])*x;
}
}
else if (itype == 4) {
v = AC[13]*TMath::Landau(rlam);
}
return v;
}