// @(#)root/mathmore:$Id$ // Authors: L. Moneta, A. Zsenei 08/2005 /********************************************************************** * * * Copyright (c) 2004 ROOT Foundation, CERN/PH-SFT * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License * * as published by the Free Software Foundation; either version 2 * * of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this library (see file COPYING); if not, write * * to the Free Software Foundation, Inc., 59 Temple Place, Suite * * 330, Boston, MA 02111-1307 USA, or contact the author. * * * **********************************************************************/ // Header file for class GSLRootFinderDeriv // // Created by: moneta at Sun Nov 21 16:26:03 2004 // // Last update: Sun Nov 21 16:26:03 2004 // #ifndef ROOT_Math_GSL_RootFinderDeriv #define ROOT_Math_GSL_RootFinderDeriv #ifndef ROOT_Math_GSLFunctionAdapter #include "Math/GSLFunctionAdapter.h" #endif #ifndef ROOT_Math_IFunctionfwd #include "Math/IFunctionfwd.h" #endif #ifndef ROOT_Math_IFunction #include "Math/IFunction.h" #endif #ifndef ROOT_Math_IRootFinderMethod #include "Math/IRootFinderMethod.h" #endif #include <iostream> namespace ROOT { namespace Math { class GSLRootFdFSolver; class GSLFunctionDerivWrapper; //_____________________________________________________________________________________ /** Base class for GSL Root-Finding algorithms for one dimensional functions which use function derivatives. For finding the roots users should not use this class directly but instantiate the derived classes, for example ROOT::Math::Roots::Newton for using the Newton algorithm. All the classes defining the alhorithms are defined in the header Math/RootFinderAlgorithm.h They possible types implementing root bracketing algorithms which use function derivatives are: <ul> <li>ROOT::Math::Roots::Newton <li>ROOT::Math::Roots::Secant <li>ROOT::Math::Roots::Steffenson </ul> See also those classes for the documentation. See the GSL <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Root-Finding-Algorithms-using-Derivatives.html"> online manual</A> for information on the GSL Root-Finding algorithms @ingroup RootFinders */ class GSLRootFinderDeriv: public IRootFinderMethod { public: GSLRootFinderDeriv(); virtual ~GSLRootFinderDeriv(); private: // usually copying is non trivial, so we make this unaccessible GSLRootFinderDeriv(const GSLRootFinderDeriv &); GSLRootFinderDeriv & operator = (const GSLRootFinderDeriv &); public: #if defined(__MAKECINT__) || defined(G__DICTIONARY) bool SetFunction( const IGenFunction & , double , double ) { std::cerr <<"GSLRootFinderDeriv - Error : Algorithm requirs derivatives" << std::endl; return false; } #endif bool SetFunction( const IGradFunction & f, double xstart) { const void * p = &f; return SetFunction( &GSLFunctionAdapter<IGradFunction>::F, &GSLFunctionAdapter<IGradFunction>::Df, &GSLFunctionAdapter<IGradFunction>::Fdf, const_cast<void *>(p), xstart ); } typedef double ( * GSLFuncPointer ) ( double, void *); typedef void ( * GSLFdFPointer ) ( double, void *, double *, double *); bool SetFunction( GSLFuncPointer f, GSLFuncPointer df, GSLFdFPointer fdf, void * p, double Root ); using IRootFinderMethod::SetFunction; /// iterate (return GSL_SUCCESS in case of successful iteration) int Iterate(); double Root() const; /// Find the root (return false if failed) bool Solve( int maxIter = 100, double absTol = 1E-8, double relTol = 1E-10); /// Return number of iterations int Iterations() const { return fIter; } /// Return the status of last root finding int Status() const { return fStatus; } const char * Name() const; protected: void SetSolver ( GSLRootFdFSolver * s ); void FreeSolver(); private: GSLFunctionDerivWrapper * fFunction; GSLRootFdFSolver * fS; mutable double fRoot; mutable double fPrevRoot; int fIter; int fStatus; bool fValidPoint; }; } // namespace Math } // namespace ROOT #endif /* ROOT_Math_GSL_RootFinderDeriv */