RooAbsData* | fAsimovData | asimov data set |
RooArgSet | fAsimovGlobObs | snapshot of Asimov global observables |
RooArgSet | fBestFitParams | snapshot of all best fitted Parameter values |
RooArgSet | fBestFitPoi | snapshot of best fitted POI values |
double | fNLLAsimov | |
double | fNLLObs | |
bool | fOneSided | for one sided PL test statistic (upper limits) |
bool | fOneSidedDiscovery | for one sided PL test statistic (for discovery) |
int | fUseQTilde | flag to indicate if using qtilde or not (-1 (default based on RooRealVar)), 0 false, 1 (true) |
static int | fgPrintLevel | control print level (0 minimal, 1 normal, 2 debug) |
constructor for asymptotic calculator from Data set and ModelConfig The constructor will perform a global fit of the model to the data and build an Asimov data set. It will then also fit the model to the Asimov data set to find the likelihood value of the Asimov data set nominalAsimov is an option for using Asimov data set obtained using nominal nuisance parameter values By default the nuisance parameters are fitted to the data NOTE: If a fit has been done before, one for speeding up could set all the initial prameters to the fit value and in addition set the null snapshot to the best fit
It performs an hypothesis tests using the likelihood function and computes the p values for the null and the alternate using the asymptotic formulae for the profile likelihood ratio. See G. Cowan, K. Cranmer, E. Gross and O. Vitells. Asymptotic formulae for likelihood- based tests of new physics. Eur. Phys. J., C71:1–19, 2011. The formulae are valid only for one POI. If more than one POI exists consider as POI only the first one
function given the null and the alt p value - return the expected one given the N - sigma value
fill bins by looping recursivly on observables
iterate a Prod pdf to find all the Poisson or Gaussian part to set the observed value to expected one
set observed value to the expected one works for Gaussian, Poisson or LogNormal assumes mean parameter value is the argument not constant and not depoending on observables (if more than two arguments are not constant will use first one but printr a warning !) need to iterate on the components of the POisson to get n and nu (nu can be a RooAbsReal) (code from G. Petrucciani and extended by L.M.)
generate counting Asimov data for the case when the pdf cannot be extended assume pdf is a RooPoisson or can be decomposed in a product of RooPoisson, otherwise we cannot know how to make the Asimov data sets in the other cases
compute the asimov data set for an observable of a pdf use the number of bins sets in the observables to do : (possibility to change number of bins) implement integration over bin content
generate the asimov data for the observables (not the global ones) need to deal with the case of a sim pdf
static function to the an Asimov data set given an observed dat set, a model and a snapshot of poi. Return the asimov data set + global observables set to values satisfying the constraints
static function to the an Asimov data set given the model and the values of all parameters including the nuisance Return the asimov data set + global observables set to values satisfying the constraints
HypoTestCalculatorGeneric(data, altModel, nullModel, 0) { }
set the test statistics for two sided (in case of upper limits for discovery does not make really sense)
{ fOneSided = false; fOneSidedDiscovery = false;}
set the test statistics for one-sided discovery
{ fOneSidedDiscovery = on; }
set using of qtilde, by default is controlled if RoORealVar is limited or not
{ fUseQTilde = on; }
return snapshot of the best fit parameter
{ return fBestFitPoi; }
return best fit parameter (firs of poi)
{ return dynamic_cast<RooRealVar*>(fBestFitPoi.first()); }
return best fit value for all parameters
{ return fBestFitPoi; }