// @(#)root/graf:$Id: TGraphQQ.cxx 31648 2009-12-08 12:59:44Z couet $ // Author: Anna Kreshuk 18/11/2005 /************************************************************************* * Copyright (C) 1995-2005, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #include "TGraphQQ.h" #include "TAxis.h" #include "TF1.h" #include "TMath.h" #include "TVirtualPad.h" #include "TLine.h" ClassImp(TGraphQQ) //______________________________________________________________________________ // // This class allows to draw quantile-quantile plots // // Plots can be drawn for 2 datasets or for a dataset and a theoretical // distribution function // // 2 datasets: // Quantile-quantile plots are used to determine whether 2 samples come from // the same distribution. // A qq-plot draws the quantiles of one dataset against the quantile of the // the other. The quantiles of the dataset with fewer entries are on Y axis, // with more entries - on X axis. // A straight line, going through 0.25 and 0.75 quantiles is also plotted // for reference. It represents a robust linear fit, not sensitive to the // extremes of the datasets. // If the datasets come from the same distribution, points of the plot should // fall approximately on the 45 degrees line. If they have the same // distribution function, but location or scale different parameters, // they should still fall on the straight line, but not the 45 degrees one. // The greater their departure from the straight line, the more evidence there // is, that the datasets come from different distributions. // The advantage of qq-plot is that it not only shows that the underlying // distributions are different, but, unlike the analytical methods, it also // gives information on the nature of this difference: heavier tails, // different location/scale, different shape, etc. // // Some examples of qqplots of 2 datasets: //Begin_Html /* <img src="gif/qqplots.gif"> */ //End_Html // // 1 dataset: // Quantile-quantile plots are used to determine if the dataset comes from the // specified theoretical distribution, such as normal. // A qq-plot draws quantiles of the dataset against quantiles of the specified // theoretical distribution. // (NOTE, that density, not CDF should be specified) // A straight line, going through 0.25 and 0.75 quantiles can also be plotted // for reference. It represents a robust linear fit, not sensitive to the // extremes of the dataset. // As in the 2 datasets case, departures from straight line indicate departures // from the specified distribution. // // " The correlation coefficient associated with the linear fit to the data // in the probability plot (qq plot in our case) is a measure of the // goodness of the fit. // Estimates of the location and scale parameters of the distribution // are given by the intercept and slope. Probability plots can be generated // for several competing distributions to see which provides the best fit, // and the probability plot generating the highest correlation coefficient // is the best choice since it generates the straightest probability plot." // From "Engineering statistic handbook", // http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm // // Example of a qq-plot of a dataset from N(3, 2) distribution and // TMath::Gaus(0, 1) theoretical function. Fitting parameters // are estimates of the distribution mean and sigma. // //Begin_Html /* <img src="gif/qqnormal.gif"> */ //End_Html// // // // References: // http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm // http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm // //______________________________________________________________________________ TGraphQQ::TGraphQQ() { //default constructor fF = 0; fY0 = 0; fNy0 = 0; fXq1 = 0.; fXq2 = 0.; fYq1 = 0.; fYq2 = 0.; } //______________________________________________________________________________ TGraphQQ::TGraphQQ(Int_t n, Double_t *x) : TGraph(n) { //Creates a quantile-quantile plot of dataset x. //Theoretical distribution function can be defined later by SetFunction method fNy0 = 0; fXq1 = 0.; fXq2 = 0.; fYq1 = 0.; fYq2 = 0.; Int_t *index = new Int_t[n]; TMath::Sort(n, x, index, kFALSE); for (Int_t i=0; i<fNpoints; i++) fY[i] = x[index[i]]; fF=0; fY0=0; delete [] index; } //______________________________________________________________________________ TGraphQQ::TGraphQQ(Int_t n, Double_t *x, TF1 *f) : TGraph(n) { //Creates a quantile-quantile plot of dataset x against function f fNy0 = 0; Int_t *index = new Int_t[n]; TMath::Sort(n, x, index, kFALSE); for (Int_t i=0; i<fNpoints; i++) fY[i] = x[index[i]]; delete [] index; fF = f; fY0=0; MakeFunctionQuantiles(); } //______________________________________________________________________________ TGraphQQ::TGraphQQ(Int_t nx, Double_t *x, Int_t ny, Double_t *y) { //Creates a quantile-quantile plot of dataset x against dataset y //Parameters nx and ny are respective array sizes fNy0 = 0; fXq1 = 0.; fXq2 = 0.; fYq1 = 0.; fYq2 = 0.; nx<=ny ? fNpoints=nx : fNpoints=ny; if (!CtorAllocate()) return; fF=0; Int_t *index = new Int_t[TMath::Max(nx, ny)]; TMath::Sort(nx, x, index, kFALSE); if (nx <=ny){ for (Int_t i=0; i<fNpoints; i++) fY[i] = x[index[i]]; TMath::Sort(ny, y, index, kFALSE); if (nx==ny){ for (Int_t i=0; i<fNpoints; i++) fX[i] = y[index[i]]; fY0 = 0; Quartiles(); } else { fNy0 = ny; fY0 = new Double_t[ny]; for (Int_t i=0; i<ny; i++) fY0[i] = y[i]; MakeQuantiles(); } } else { fNy0 = nx; fY0 = new Double_t[nx]; for (Int_t i=0; i<nx; i++) fY0[i] = x[index[i]]; TMath::Sort(ny, y, index, kFALSE); for (Int_t i=0; i<ny; i++) fY[i] = y[index[i]]; MakeQuantiles(); } delete [] index; } //______________________________________________________________________________ TGraphQQ::~TGraphQQ() { //Destroys a TGraphQQ if (fY0) delete [] fY0; if (fF) fF = 0; } //______________________________________________________________________________ void TGraphQQ::MakeFunctionQuantiles() { //Computes quantiles of theoretical distribution function if (!fF) return; TString s = fF->GetTitle(); Double_t pk; if (s.Contains("TMath::Gaus") || s.Contains("gaus")){ //use plotting positions optimal for normal distribution for (Int_t k=1; k<=fNpoints; k++){ pk = (k-0.375)/(fNpoints+0.25); fX[k-1]=TMath::NormQuantile(pk); } } else { Double_t *prob = new Double_t[fNpoints]; if (fNpoints > 10){ for (Int_t k=1; k<=fNpoints; k++) prob[k-1] = (k-0.5)/fNpoints; } else { for (Int_t k=1; k<=fNpoints; k++) prob[k-1] = (k-0.375)/(fNpoints+0.25); } //fF->GetQuantiles(fNpoints, prob, fX); fF->GetQuantiles(fNpoints, fX, prob); delete [] prob; } Quartiles(); } //______________________________________________________________________________ void TGraphQQ::MakeQuantiles() { //When sample sizes are not equal, computes quantiles of the bigger sample //by linear interpolation if (!fY0) return; Double_t pi, pfrac; Int_t pint; for (Int_t i=0; i<fNpoints-1; i++){ pi = (fNy0-1)*Double_t(i)/Double_t(fNpoints-1); pint = TMath::FloorNint(pi); pfrac = pi - pint; fX[i] = (1-pfrac)*fY0[pint]+pfrac*fY0[pint+1]; } fX[fNpoints-1]=fY0[fNy0-1]; Quartiles(); } //______________________________________________________________________________ void TGraphQQ::Quartiles() { // compute quartiles // a quartile is a 25 per cent or 75 per cent quantile Double_t prob[]={0.25, 0.75}; Double_t x[2]; Double_t y[2]; TMath::Quantiles(fNpoints, 2, fY, y, prob, kTRUE); if (fY0) TMath::Quantiles(fNy0, 2, fY0, x, prob, kTRUE); else if (fF) { TString s = fF->GetTitle(); if (s.Contains("TMath::Gaus") || s.Contains("gaus")){ x[0] = TMath::NormQuantile(0.25); x[1] = TMath::NormQuantile(0.75); } else fF->GetQuantiles(2, x, prob); } else TMath::Quantiles(fNpoints, 2, fX, x, prob, kTRUE); fXq1=x[0]; fXq2=x[1]; fYq1=y[0]; fYq2=y[1]; } //______________________________________________________________________________ void TGraphQQ::SetFunction(TF1 *f) { //Sets the theoretical distribution function (density!) //and computes its quantiles fF = f; MakeFunctionQuantiles(); }