RooAbsData* | Generate(RooAbsPdf& pdf, RooArgSet& observables, const RooDataSet* protoData = NULL, int forceEvents = 0) const |
Double_t | fAdaptiveHighLimit | |
Double_t | fAdaptiveLowLimit | |
Bool_t | fExpectedNuisancePar | whether to use expectation values for nuisance parameters (ie Asimov data set) |
Bool_t | fGenerateBinned | |
const RooArgSet* | fGlobalObservables | |
RooAbsPdf* | fImportanceDensity | in dev |
const RooArgSet* | fImportanceSnapshot | in dev |
Double_t | fMaxToys | |
Int_t | fNEvents | number of events per toy (may be ignored depending on settings) |
Int_t | fNToys | number of toys to generate |
const RooArgSet* | fNuisancePars | |
RooArgSet* | fNullPOI | parameters of interest |
const RooArgSet* | fObservables | |
RooAbsPdf* | fPdf | model |
RooAbsPdf* | fPriorNuisance | prior pdf for nuisance parameters |
RooStats::ProofConfig* | fProofConfig | ! |
const RooDataSet* | fProtoData | in dev |
string | fSamplingDistName | name of the model |
Double_t | fSize | |
RooStats::TestStatistic* | fTestStat | test statistic that is being sampled |
Double_t | fToysInTails |
only checks, no guessing/determination (do this in calculators, e.g. using ModelConfig::GuessObsAndNuisance(...))
Use for serial and parallel runs.
This is the main function for serial runs. It is called automatically from inside GetSamplingDistribution when no ProofConfig is given. You should not call this function yourself. This function should be used by ToyMCStudy on the workers (ie. when you explicitly want a serial run although ProofConfig is present).
This method generates a toy data set for the given parameter point taking global observables into account.
This is the generate function to use in the context of the ToyMCSampler instead of the standard RooAbsPdf::generate(...). It takes into account whether the number of events is given explicitly or whether it should use the expected number of events. It also takes into account the option to generate a binned data set (ie RooDataHist).
Extended interface to append to sampling distribution more samples
Main interface to evaluate the test statistic on a dataset
Forces n events even for extended PDFs. Set NEvents=0 to use the Poisson distributed events from the extended PDF.
specify the values of parameters used when evaluating test statistic
Set the Pdf, add to the the workspace if not already there
{ fPdf = &pdf; }
How to randomize the prior. Set to NULL to deactivate randomization.
{ fPriorNuisance = pdf; }
specify the nuisance parameters (eg. the rest of the parameters)
{ fNuisancePars = &np; }
specify the observables in the dataset (needed to evaluate the test statistic)
{ fObservables = &o; }
specify the conditional observables
{ fGlobalObservables = &o; }
set the size of the test (rate of Type I error) ( Eg. 0.05 for a 95% Confidence Interval)
{ fSize = size; }
set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval)
{ fSize = 1. - cl; }
Set the TestStatistic (want the argument to be a function of the data & parameter points
{ fTestStat = testStatistic; }
control to use bin data generation
{ fGenerateBinned = binned; }
Set the name of the sampling distribution used for plotting
{ if(name) fSamplingDistName = name; }
for importance sampling, specifies the pdf to sample from
{ fImportanceDensity = p; }
for importance sampling, a snapshot of the parameters used in importance density
{ fImportanceSnapshot = &s; }
calling with argument or NULL deactivates proof
{ fProofConfig = pc; }